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Recap and Q&A



Kalman filter

while no measurement: predict
{
m̂k = Akmk−1

P̂k = AkPk−1A>k + Qk−1

predict measurement
{
ŷk = Hkm̂k

Ŝk = HkP̂kH>k + Rk

on measurement: update


Kk = P̂kH>k Ŝ−1

k

mk = m̂k + Kk (yk − ŷk)
Pk = P̂k −KkŜkK>k

Implement these functions in a programming language:
• m, P←− kf predict(m, P, A, Q)
• m, P, K←− kf update(m, P, H, R, y)
• y, S←− kf measure(m, P, H, R)
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1. Propagation of uncertainty to output using best estimate

2. Kalman gain

3. Update mean by projecting error on Kalman gain

4. Update cov by propagating uncertainty on measurement backward

Do not forget to update your measurement prediction after and update.

Which matrices participate in each function?

How would you determine which states are most sensitive to the residuals
yk − ŷk?



Python & GNU Octave (MATLAB) tools

These libraries are relatively easy to follow, and have a book for
documentation:
• FilterPy

• https://filterpy.readthedocs.io/en/latest/
• book: https://nbviewer.org/github/rlabbe/

Kalman-and-Bayesian-Filters-in-Python/blob/master/table_
of_contents.ipynb

• ekfukf
• MATLAB/Octave https://github.com/EEA-sensors/ekfukf,
• Octave installable https://github.com/kakila/ekfukf
• book http://users.aalto.fi/˜ssarkka/pub/cup_book_online_

20131111.pdf (if you like it, buy it!)
They are not performant (pykalman is abandoned), for prototyping.
Consider Julia: https://github.com/JuliaGNSS/KalmanFilters.jl
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There are many libraries for Kalman filter, search for the one that suits
you.
In my experience, I use simple ones for quickly prototyping, then implement
what I need case specific. Algorithms are very simple.
Difficulty in inverting matrices: good algorithms are already available.
Most relevant matrices are symmetric positive definite.
General probabilistic inference: PyMC3 https://docs.pymc.io/en/
stable/

https://filterpy.readthedocs.io/en/latest/
https://nbviewer.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb
https://nbviewer.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb
https://nbviewer.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb
https://github.com/EEA-sensors/ekfukf
https://github.com/kakila/ekfukf
http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf
http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf
https://github.com/JuliaGNSS/KalmanFilters.jl
https://docs.pymc.io/en/stable/
https://docs.pymc.io/en/stable/


Warm-up

Use your code or a library to implement:
• recursive linear regression yk = tka+ b+ εk
• Delayed linear regression yk = w0 + w1yk−1 + · · ·+ wdyk−d + εk
• Extreme Learning Machines

yk =
D∑
d=1

Φ[yk−d]w>d

Φ[x] =
[
φ1(x) · · · φn(x)

]
, wd =

[
wd,1 · · · wd,n

]
How does it differ from:

yd,k = Φ[yk−d]w>
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Coffee break: 10 minutes



Participant examples



Examples provided by participants

• Frédéric Bless: Control of a heat pump test bench
• Rafael Graf: Incineration plant model validation. Inspired by

https://www.frontiersin.org/articles/10.3389/fenrg.
2020.00049/full
• Pirmin Weigele: Predictive damping in electromagnetic force

compensation
• Matthias Frommelt: End-of-life of Li-ion batteries prediction using

real-time data
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https://www.frontiersin.org/articles/10.3389/fenrg.2020.00049/full
https://www.frontiersin.org/articles/10.3389/fenrg.2020.00049/full


Lunch: 1 hour



Discretization of ODEs



What’s an ODE?
Ordinary differential equations (ODE) define a function (the unknown) via
a relation of its derivatives:

d2x(t)
dt2 + γ

dx(t)
dt + ω2x(t) = w(t)

That’s a 2nd oder equation. For low order we can shorten it to:

ẍ+ γẋ+ ω2x = w(t)

High order equations can (almost always) be converted to a system of
1st order equations:

x1(t) := x(t), x2(t) := ẋ(t)

ẋ =
[
ẋ1
ẋ2

]
=
[

0 1
−ω2 −γ

] [
x1
x2

]
+
[
0
1

]
w(t) = Fx+ Lw(t)

We exchange order for dimension.
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Linear ODE

In general F and L can depend on x and time. If they are constant or
depend only on time, the system is linear (affine):

ẋ = F(t)x+ L(t)wx(t)
ẏ = F(t)y + L(t)wy(t)
z := x+ ay

ż = ẋ+ aẏ = F(t)x+ L(t)wx(t) + aF(t)y + aL(t)wy(t) =
= F(t) (x+ ay) + L(t) (wx(t) + awy(t))

The derivative of the combination follows the same equation with the
combined inputs.
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1st order homogenous ODE
Defines a 1-dimensional system: ẋ = Fx. Integrating both sides from 0 to
t. ∫ t

0
ẋ(τ)dτ = x(t)− x(0)→ x(t) = x(0) +

∫ t

0
Fx(τ)dτ

Recursively insert the formal solution in its expression:

x(t) = x(0) +
∫ t

0
F

[
x(0) +

∫ τ

0
Fx(τ1)dτ1

]
dτ = = x(0) + Fx(0)t+

∫ t

0

∫ τ

0
F 2x(τ1)dτ1dτ =

= x(0) + Fx(0)t+
∫ t

0

∫ τ

0
F 2
[
x(0) +

∫ τ1

0
Fx(τ2)dτ2

]
dτ1dτ =

= x(0) + Fx(0)t+ 1
2F

2x(0)t2 +
∫ t

0

∫ τ

0

∫ τ1

0
F 3x(τ2)dτ2dτ1dτ = . . .

x(t) = x(0) + Fx(0)t+ 1
2F

2x(0)t2 + 1
6F

3x(0)t3 + . . . =

=
(

1 + Ft+ F 2t2

2! + F 3t3

3! + . . .

)
x(0) = exp(Ft)x(0)
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The infinite sum inside the parenthesis is the Taylor expansion of exp(Ft).
Check it by expanding ex around 0, i.e.

f(x) =
∞∑

n=0

1
n!

dnf

dxn

∣∣∣
xo

(x− xo)n

is the Taylor expansion of f(x) around xo



1st order N-dimensional ODE
Homogenous

The homogenous case, defines a N-dimensional system: ẋ = Fx.
Following the same procedure as before

x(t) =
(

I + Ft+ F2t2

2! + F3t3

3! + . . .

)
x(0) := exp(Ft)x(0)

That’s the definition of the matrix exponential
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The matrix exponential is not the exponential of each entry in the matrix
(element-wise exponential). Consider

F =
[
0 1
0 0

]
F2 =

[
0 1
0 0

] [
0 1
0 0

]
= 0

→ Fn = 0

Then
exp(Ft) = I + Ft =

[
1 t
0 1

]
6=
[
e0 et

e0 e0

]
=
[
1 et

1 1

]



1st order N-dimensional ODE
Inhomogenous

For ẋ− Fx = Lw(t). We get the solution between t0 and t:

x(t) = exp(F(t− t0))x(0) +
∫ t

t0
exp(F (t− τ))Lw(τ)dτ

In the scalar case this looks like
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Multiply both sides by exp(−Ft)

exp(−Ft)ẋ− exp(−Ft)Fx = exp(−Ft)Lw(t)

You can prove from the definition of the matrix exponential the property

d
dt exp(−Ft) = − exp(−Ft)F

Just like the scalar case, but here the order of multiplication is important.
Observe that:

d
dt [exp(−Ft)x(t)] = exp(−Ft)ẋ− exp(−Ft)Fx = exp(−Ft) (ẋ− Fx)

Then the equation reduces to

d
dt [exp(−Ft)x(t)] = exp(−Ft)L(t)w(t)

and by integrating both sides from t0 to t we get the solution. Note that∫ t

t0

d
dτ [exp(−Fτ)x(τ)]dτ = exp(−Ft)x(t)− exp(−Ft0)x(t0)



Discretization

For the general ODE
ẋ(t) = f(x(t), t)

If we move from t to t+ ∆t we get the solution

x(t+ ∆t) = x(t) +
∫ t+∆t

t
f(x(τ), τ)dτ

So the question is how to discretize the integral in the right-hand side.
Choosing a quadrature defines an integration method. Euler method is
obtained by the approximation∫ t+∆t

t
f(x(τ), τ)dτ ≈ f(x(t), t)∆t
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Discretization: example
Euler method 1D

ẋ = −3x ẋ = −3x− x2

source: s euler exp.m
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A comparison of discretization methods. We will see some of the others
later on. Clearly Euler is not the best.



Discretization: example
Euler method 2D

ẋ =
[

0 1
−ω2 −γ

]
x ẋ =

[
x2

−ω2 sin(x1)− γx2

]

source: s euler exp.m
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Discretization
Linear time invariant (LTI) systems

The system ẋ− Fx = Lw(t) has an exact solution between t and t+ ∆t

x(t) = exp(F∆t)x(0) + exp(F∆t)
∫ t+∆t

t
exp(F (t− τ))Lw(τ)dτ

So the approximation is only for the last integral. For example:

x̂(tk+1) = exp(F∆t) [x̂(tk) + Lw(tk)∆t]
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Whenw(t) is stochastic this is an instance of the Euler-Murayama method.



Discretization
Linear time invariant (LTI) systems

source: s exp step input.m
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Discretization
Linear time invariant (LTI) systems

This also works when w(t) is a random process.

source: s exp step input.m
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Whenw(t) is stochastic this is an instance of the Euler-Murayama method.
The stochastic case is subtle, e.g. the discretized noise has a variance that
depends on the time step ∆t. For details, refer to Simo Särkkä and Arno
Solin (2019). Applied Stochastic Differential Equations.
There are stochastic methods that generalize the deterministic ones, e.g.
Stochastic Runge-Kutta. For second order system check the Stochastic
Verlet algorithm.

https://users.aalto.fi/~ssarkka/#publications


Polynomial regression
Hands-on

The data model is yk = p(tk, n) + εk, where

p(t, n) :=
n∑
s=0

ast
s

is a polynomial of degree n. Consider the system

ẋ1 = x2 ẋ2 = x3 ẋ3 = 0ẋ1
ẋ2
ẋ3

 =

0 1 0
0 0 1
0 0 0


x1
x2
x3


if we start at x(0) =

[
a0 a1 2a2

]
we get

x3(t) = 2a2 x2(t) = a1 + 2a2t x1(t) = a0 + a1t+ a2t
2

we recover p(t, 2) on x1(t)!
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Polynomial regression
Hands-on

Can be generalized to any finite degree:

ẋ = Fx, Fij = δi(j+1), 1 ≤ i, j ≤ n+ 1

x(0)> =
[
a0 a1 2a2 . . . n!an

]
has p(t, n) in x1(t).
Then filter

A = exp (F∆t), Q 6= 0

H =
[
1 0 . . . 0

]
, R 6= 0

implements polynomial regression with drift model in the coefficients.
See s polyreg.py
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Coffee break: 10 minutes



Parameter estimation



What to estimate?

The linear Kalman filter is defined with the parameters
A,H,Q,R,P0,m0.
• A,H reflect knowledge of the physical system (unless data-driven).
• Bounds for the diagonal of R can be estimated from the data.
• Q in general is hidden, unless derived from physical SDE.
• P0,m0 can be critical for the performance of filters with long-term

memories (eigenvalues of A closer to or bigger than 1).
Idea: start by freezing degrees of freedom (à la stochastic gradient decent).
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To estimate R use any smoother on the data and compute the variance
of the residuals between smoothed data and raw data. There is almost
always a strong expectation on this parameter.
Many physics based models will have limited memory. An exception would
be a fluid model where waves can carry information for long distances
and induce long-term temporal correlations. In general systems with echo
(transport, waves) can produce these effects.



Posterior likelihood
Bayesian filter for state space models with parameter vector θ

θ ∼ p(θ), xo ∼ p(x0|θ)
xk ∼ p(xk|xk−1,θ)
yk ∼ p(yk|xk,θ)

The idea is to compute the posterior distribution of states and parameters
given the measurements

p(x0:T ,θ|y1:T ) ∝ p(y1:T |x0:T ,θ)p(x0:T |θ)p(θ)

where

p(y1:T |x0:T ,θ) =
T∏
k=1

p(yk|xk,θ)

p(x0:T |θ) = p(x0|θ)
T∏
k=1

p(xk|xk−1,θ)

We focus on the parameters, so we ”average” (marginalize) out the states.
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Herein follow chapter 12 of the book Särkkä, S. (2013). Bayesian Filtering
and Smoothing.

These are the same relations as before, we just made the parameters ex-
plicit.
p(θ) is the prior over the parameters.



Posterior likelihood
Bayesian filter for state space models with parameter vector θ

θ ∼ p(θ), xo ∼ p(x0|θ)
xk ∼ p(xk|xk−1,θ)
yk ∼ p(yk|xk,θ)

The posterior distribution of parameters given the measurements
p(θ|y1:T ) ∝ p(y1:T |θ)p(θ)

where (check the ”averaged” states)

p(y1:T |θ) =
T∏
k=1

p(yk|y1:k−1,θ)

p(yk|y1:k−1,θ) =
∫ update︷ ︸︸ ︷

p(yk|xk,θ)︸ ︷︷ ︸
measurement

p(xk|y1:k−1,θ)︸ ︷︷ ︸
prediction

dxk
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Herein follow chapter 12 of the book Särkkä, S. (2013). Bayesian Filtering
and Smoothing.

For conveninece of the notation we used

p(y1|y1:0,θ) = p(y1|θ)

To get the recursion for the posterior of the parameters, the key is to write
a recursion for likelihood of the data. We do that next.



Posterior likelihood
We know how to compute the posterior distribution of parameters given
the measurements at a given step k

p(θ|y1:k) ∝ p(y1:k|θ)p(θ)
We define log-likelihood φk(θ):

exp(φk(θ)) := p(y1:k|θ) =
k∏

n=1
p(yn|y1:n−1,θ)

= p(yk|yk−1,θ)

p(y1:k−1|θ)=exp(φk−1(θ))︷ ︸︸ ︷
k−1∏
n=1

p(yn|y1:n−1,θ)

= p(yk|yk−1,θ) exp(φk−1(θ))

Taking logs
φk(θ) = φk−1(θ) + log [p(yk|yk−1,θ)] , φ0(θ) = log [p(θ)]
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Herein follow chapter 12 of the book Särkkä, S. (2013). Bayesian Filtering
and Smoothing.

If the prior p(θ) is uniform, this is the same as maximum likelihood (ML).
If the distribution reflect our prior knowledge about the parameters, then
it is maximum a posteriori probability (MAP).
φk(θ) is the log-likelihood, sometimes the negative is defined.
Maximizing the log-likelihood gives optimal estimates. This should remind
you of Viterbi, if you know it.



Linear KF likelihood

With the filters we have been studying, the log-likelihood has an explicit
formula.

vk(θ) := yk −H(θ)mk(θ)

φk(θ) = φk−1(θ)− 1
2 log [2π det Sk(θ)]− 1

2v
>
k (θ)S−1

k (θ)vk(θ)

√
Sk

H(θ)mk(θ)

yk
x

pdf(x)
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To compute the likelihood we need to run over the whole data for each
new value of θ. Each run over the whole data is done at fixed parameter
value.



Maximum likelihood
Example: oscillator

xk = exp
([

0 1
−ω2 0

]
∆t
)
xk−1 +

[
0
1

]
wk−1, wk−1 ∼N(0, q)

yk =
[
1 0

]
xk + rk, rk ∼N(0, σ2

y)

s estimate oscillator.py does
• Line search for ω
• Optimization for ω, q, σy, m0
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Gradient based methods will not be sensitive to the data if started far
away from a local maximum: likelihood tends to be sharp and wiggly,
vanishing gradients. Alternative: informative priors, e.g. tight bounds on
the parameters.
If you want to optimize many parameters of the model, check the Expec-
tation Maximization algorithm.



Wrap-up



Summary and Outlook

• Linear Kalman filter with Gaussian distributions X
• Non-linear

• Local linearization (Extended Kalman filter)
• Gaussian approximation (Unscented Kalman filter, General Gaussian

filters: GHKF, CKF)
• Particle filters, . . .
• Brute force (naive MC, simulation of trajectories)

• Other noise models (check generalizations of KF, Särkkä’s book
references)
• Recursive or Batch?

• Data: fixed size or incoming?
• Estimation parameters: recorded data (batch) or online?
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