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Overview



Our goal

source: s filtering interactive.py
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The goal of the workshop is that you are able to understand and configure
Kalman filters. You should be able ot understand when to use it, how to
use it, and what to do in case it is not applicable.



The needed ingredients

• An initial state → Prior distribution
• Model for the dynamics of the inferred states: how the states change

over time → Linear Iterated maps
• Model for how the measurements are obtained from the states →

Linear Map, likelihood
• A method to update the inferred states → Bayes rule, posterior

distribution
Expert knowledge is realized in the models of the dynamics and the
measurements.
Model dynamics (structure and parameter values) can also be learned from
data (out fo scope: data driven dynamical systems, system identification).
Given the model structure parameters can be tuned to the data (within
scope: parameter estimation)
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The needed ingredients

source: Wikipedia, Kalman filter
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Our goal of today is to understand the prediction step. In the follow-
ing session we will cover the update step. Finally we will work several
examples.



Filtering and smoothing

source: Särkkä, S. doi:10.1017/CBO9781139344203
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State estimation problems can be divided into optimal prediction, filtering,
and smoothing depending on the time span of the measurements available
with respect to the time of the estimated state:
• Prediction: estimate future state, beyond the current

measurements and state.
• Filtering: estimate current state, given the previous and current

measurements.
• Smoothing: estimate current state, given previous, current, and

future measurements.



Filtering and smoothing

source: Särkkä, S. doi:10.1017/CBO9781139344203
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Smoothing uses future information to update the past, hence the estima-
tion is smoother.
Let’s start with prediction.



Iterated maps

For the prediction step we need to set up a model that allows us to update
the state iteratively. A widely used class of models to do this are Ordinary
Differential Equations (ODE), which are continuous models. In the seminar
we will look at discrete models that update the state in discrete steps. One
can obtain discrete models from an ODE, via discretization, we will see
that later.
The prediction step then requires a model of the form

xk+1 = f(xk, . . .)

where the function f takes the state at step k (any other information) and
generates the (predicted) state at step k + 1.
We look into linear update functions.



Iterated map: single variable

Map (mapping, transformation, etc.):

x = αy

Iterated map (use the result as the next value of x):

xk = αxk−1 |α| ≤ 1

0 x0

1 x1 = αx0

2 x2 = αx1 = ααx0 = α2x0

3 x3 = αx2 = αα2x0 = α3x0

4 . . .

5 xk = αkx0

The composition of linear maps gives
a different linear map at each step:
not a straight trajectory
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What do we get if α = 1?
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Do you expect a straight trajectory?
What do we get if α = 1 and α = −1?
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We will now iterate the map on the initial condition x0.



Iterated map: single variable
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Iterated map: single variable
Example

xk = (1− 0.05)xk−1
source: s iterated map1D.py

Observation: linear map but not straight trajectory

juanpablo.carbajal@ost.ch (OST-IET-SCE) Introduction to recursive machine learning January 13, 2023 8 / 48

Test other values of α ∈ [−1, 1]. For what values of α do you see qualita-
tive change in behavior?
What happens when α < −1 or α > 1?



Iterated map: two variables
Matrices and vectors

Transform two variables x1, x2 into y1, y2

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

Organize the values in tables
(matrices)

matrix: A =
[
a11 a12
a21 a22

]

single column: x =
[
x1
x2

]
y =

[
y1
y2

]
single row: x> =

[
x1 x2

]

Define the product of rows and
columns

The
transformation of the variables now
looks like

y = Ax

juanpablo.carbajal@ost.ch (OST-IET-SCE) Introduction to recursive machine learning January 13, 2023 9 / 48

The color of the indices suggest a way to order the equations. Do you
have any idea?
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The shape (a.k.a. size) of a matrix with n rows and m columns is written
n×m. One can also specify the set to which the entries (or cells) of the
matrix belong to, e.g. R2×3 are matrices with 2 rows and 3 columns with
entries in the real numbers. Other examples would be Zn×n,

{
0, 1
}n×m,

etc.

If x is a column vector, what gives xx>?
Work this out, because it will help with the definition of the variance of a
random vector.
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Re-write the transformation using row vectors.



Iterated map: two variables
Map (mapping, transformation, etc.)

y = Ax

Iterated map:

xk = Axk−1

A = I + α

[
0 1
−1 −2α

]
0 ≤ α ≤ 1

0 x0

1 x1 = Ax0

2 x2 = Ax1 = AAx0 = A2x0

3 x3 = Ax2 = AA2x0 = A3x0

4 . . .

5 xk = Akx0

The composition of linear maps gives
a different linear map at each step:
not a straight trajectory
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Iterated map: two variables
Example

xk =
(

I + 0.2
[

0 1
−1 −0.4

])
xk−1

source: s iterated map2D.py
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Test other values of α ∈ [0, 1]. For what values of α do you see qualitative
changes in behavior?
What happens when α < 0 or α > 1?



Model of measurements (observations)

Till now we have explore ideas to model the evolution of the states of a
system. A system can have many states (components of the vector x), but
in practice we do not observe them all. We measure only a few states, or
linear mixtures of them, in general we measure any function of the states...

Now we will explore how to model linear measurements.



Measurement model

The states of the model are not necessarily observed. The modelled
measurements, the values given by sensors, are obtained from the state of
the model:

xk = Axk−1

yk = Hxk Measurement model

The dimension of y is defined by the number of sensors (or measurement
channels). For m measurements and a n dimensional state we have that:
x ∈ Rn×1, y ∈ Rm×1, A ∈ Rn×n, H ∈ Rm×n.
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In general, the measurement model looks like:

yk = h(xk, . . .)

it provides a model of the measurements as a function of the current state
of the model. Herein we focus on linear measurement models.

It is common to have m (number of measurements) lower than n. Hence
H is usually a wider than taller (short-fat matrix).

Modify s iterated map2D.py (or implement your own) and implement
different measurement matrices H. Plot the measurements.



Measurement model

Consider the model:

xk =
[

1 0.2
−0.2 0.92

]
xk−1

yk = Hxk

Measure 1st component:
H =

[
1 0

]
Measure 2nd component:
H =

[
0 1

]
What does this measures?

H =
[
−1 1

]
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1. What’s H if we measure the mean of the two components?
2. What’s H if we measure x1 and x1 + x2?



Inputs (deterministic perturbations)

Till now we have seen autonomous system models (a.k.a. Linear Time
Invariant, LTI). When the evolution of the states is also affected by an
external signal (a.k.a. exogenous input), the system is not autonomous
anymore, sometimes it is called input-driven.

Now we will explore how to model linear inputs.



Inputs

xk = Axk−1 + Buk−1 Input matrix, inputs
yk = Hxk

Example from kinematics: the evolution of the position and speed of a
point-mass moving in 1D.

pt = pt−1 + vt−1∆t vt = vt−1 + at−1︸︷︷︸
Ft−1
m

∆t

define
xt =

[
pt
vt

]
A =

[
1 ∆t
0 1

]
ut = at B =

[
0

∆t

]
then we get (assuming we observe only the position)

xt = Axt−1 + But−1

yt =
[
1 0

]
xt
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For n states and k inputs, the input matrix has the shape n× k.
Can you provide an example, even if it is 1-dimensional?
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The example is the Euler method, which is not a good discretization unless
∆t is very small. An alternative map would be

pt = pt−1 + vt−1∆t+ 1
2at−1∆t2

B =
[

∆t2
2

∆t

]
and at−1 is the mean acceleration between t− 1 and t.
One can also get rid of the velocity using Verlet integration without velocity
(Störmer method), which uses central differences for the second derivative:

pt = 2pt−1 − pt−2 + at−1∆t2

What are B, H, and ut in this case? How do those change if at = −kpt?



Inputs

source: s kinematic map.py
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Examples
Iterated map for linear regression

Given some examples of a line (two would suffice): {(ti, yi)}i=1,2,.... Find
the slope and intercept of a straight line that goes through the points:

ati + b = yi

Batch version: build the design matrix (also data matrix, Vandermonde
matrix for polynomial regression) and the unknown coefficients vector:

D

[
a
b

]
= y, D =

t1 1
... ...
tn 1

 →
[
a
b

]
= D−1y

Issues: 1) the independent variable might grow to very large numbers; 2)
The more data we get, the worst the conditioning of the design matrix.
Not the best choice for an online algorithm!
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The design matrix can be built with any feature (function) of the regressor,
e.g. polynomial regression would look just like this, alas with a wider
Vandermonde matrix.

By solving the problem with, e.g. least squares one recovers the coefficients
of the line.
If you never did, write the a program that solves this problem. That is, a
function that consumes the data and returns the coefficient of the line.

In the batch approach the more data we get the worst is the conditioning
of the design matrix. Also the independent t variable might grow to very
large numbers. Hence this solution is not the best choice for an online
algorithm.

https://en.wikipedia.org/wiki/Vandermonde_matrix
https://en.wikipedia.org/wiki/Vandermonde_matrix


Examples
Iterated map for linear regression

The dynamic model for a straight line: if we get a point already on the
line, a neighboring point is obtained by

yk = yk−1 + a∆tk ∆tk = tk − tk−1

∆t is not expected to grow indefinitely (unlike t in batch regression).
The iteration above, defines the dynamic and measurement model

xk = xk−1, x0 =

 a
y0


yk = Hkxk, Hk =

[
∆tk 1

]

juanpablo.carbajal@ost.ch (OST-IET-SCE) Introduction to recursive machine learning January 13, 2023 16 / 48

You can get this insight by looking at the two points:

yk−1 = atk−1 + b

yk = atk + b

and replacing b in the second equation, using the first one.
1. What is the system matrix A in this case?
2. What type of dynamics does it model?
3. Is there any (exogenous) inputs? What is the input matrix B

4. What would the state xk and the measurement matrix be for
polynomial regression? y(t) = a0 + a1t+ a2t

2 + . . .

5. What would the state and the measurement matrix be for a linear
mixture of functions? y(t) =

∑N
i=0 aiϕi(t)



Coffee break: 15 minutes



Error propagation

We will investigate how a small deviations propagate through function. The
goal is to build some intuition and to expose ourselves to the structure of
the emerging formulas.



Linearly related variables

Take two variables related by: y = b+ ax
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Linearly related variables

Take two variables related by: y = b+ ax

At a given value xo we get:
yo = b+ axo
If we modify xo by a given amount
∆x:

ŷ = b+ a(xo + ∆x) = b+ axo︸ ︷︷ ︸
=yo

+a∆x

= yo + a∆x

source: https: // www. geogebra. org/ m/ peude6ek
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https://www.geogebra.org/m/peude6ek


Linearly related variables

Take two variables related by: y = b+ ax

At a given value xo we get:
yo = b+ axo
If we modify xo by a given amount
∆x:

ŷ = b+ a(xo + ∆x) = b+ axo︸ ︷︷ ︸
=yo

+a∆x

= yo + a∆x

Then yo changes an amount ∆y:

ŷ = yo + ∆y
∆y := a∆x

source: s sampling mapping.py
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Linearly related variables

Take two variables related by: y = b+ ax

∆y := a∆x

The ”error” ∆x propagates to y via the slope a of the relation. The
intercept b doesn’t play a role in the induced ”error” ∆y.
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Can you propagate and initial value error on an iterated map?



Error propagation in an 1D interated map

xk = axk−1

Using our previous result

∆xk = a∆xk−1

It follows the same dynamics as the state!
Let’s propagate an initial value error

0 x0 + ∆x0

1 x1 = a (x0 + ∆x0)
2 x2 = a2 (x0 + ∆x0)
3 . . .

4 xk = ak (x0 + ∆x0)
It is just the iterated map on a different initial condition!
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Implement these formulas in the computer and run some simulations for
the same x0 and different values of ∆x0.

For many simulations with different values of ∆x0, what’s the mean value
of xk?

Open question: what if we made an error at each iteration step?

What changes if the state is multi-dimensional xk? Consider these matri-
ces:

Ad = 1
2I Am =

[ 1
2

1
2

− 1
3

1
2

]
and propagate an error in the 1st component of the initial value , i.e.
x>o =

[
xo1 + ∆xo1 xo2

]



Non-linearly connected variables and small error

Consider two variables connected by a nonlinear relation: y = f(x)

At a given value xo we get
yo = f(xo)
If we modify xo by a given amount
∆x:

ŷ = f(xo + ∆x)

source: https: // www. geogebra. org/ m/ vqppqnwz
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https://www.geogebra.org/m/vqppqnwz


Non-linearly connected variables and small error

Consider two variables connected by a nonlinear relation: y = f(x)

If ∆x is small (and f analytic), then
we can proceed:

ŷ = f(xo + ∆x) ≈ f(xo) + ∂f

∂x

∣∣∣
xo

∆x

ŷ = yo + ∂f

∂x

∣∣∣
xo

∆x = yo + ∆y

∆y := ∂f

∂x

∣∣∣
xo

∆x

source: s sampling mapping.py
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Finding the best linear approximation of a nonlinear function, is called
linearization.
It corresponds to the truncated Taylor expansion of degree 1. See https:
//www.geogebra.org/m/C4S6CEdm for examples.

1. Write a program to propagate random samples through the
exponential function y(x) = exp(2x).

2. Choose the mean of the random samples as xo and linearize the
exponential function around xo. Propagate the values using the
resulting linear mapping.

3. Increase the variance of the random samples, is the linearization
similar to the propagation using the function directly?

4. Try other non-linear functions

https://www.geogebra.org/m/C4S6CEdm
https://www.geogebra.org/m/C4S6CEdm


Non-linearly connected variables and small error

Consider two variables connected by a nonlinear relation: y = f(x)

∆y := ∂f

∂x

∣∣∣
xo

∆x

The small ”error” ∆x propagates to y via the local slope of the relation.
For different values of xo the ”error”propagates differently.
There are other approaches for the non-linear case that do not make the
same assumptions we did here. This is not on the scope of the course. A
good place to start would be Wikipedia’s article on propagation of
uncertainty
https://en.wikipedia.org/wiki/Propagation_of_uncertainty.
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https://en.wikipedia.org/wiki/Propagation_of_uncertainty


Non-linearly connected variables
Nonlinear mappings can radically change the distribution

y = 1
2 tanh(15(x− µ))

(
e3|x−µ| + 1

)
+ 1
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Gaussian (Normal) distribution

We overview properties and visualizations of the Gaussian (Normal) dis-
tribution in several dimensions. We review the concepts of mean and
variance. The goal is to refresh the concept and to conceptually introduce
random processes as an infinite dimensional distribution.



1-dimensional (single variable) distribution
Box or violin plot view

year height
1985 138.8
1986 139.0
1987 139.0
1988 138.8

... ...
2010 138.8
2011 138.7
2012 139.2
2013 139.0
2014 139.0
2015 138.6

... ...
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The data is the height of many girls over several years. We can look at
the distribution of all these heights making a violin plot. In the middle of
the violin you see a box plot. The body of the violin is a smoothed version
of an histogram. The body of the violin is usually plotted resting on the
horizontal axis. Here I want to emphasize the summary offered by the box
plot, which shows in a line a location of the distribution (mean or median)
and the scale of its spread (quartiles or standard deviation).



1-dimensional (single variable) Gaussian distribution

x ∼ N
(
µ, σ2

)
∝ e

−(x−µ)2

2σ2 µ, σ ∈ R

µ ≡ E[x] σ2 ≡ E[(x− E[x])(x− E[x])]

σ

µ
x

pdf(x)

1

µ

dim

x
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The expectation operation is linear, if a and b are constants:

E[a+ bx] = a+ bE[x]

Numerically, the expectation is approximated by the usual arithmetic mean

E[x] ' 1
N

N∑
i=1

xi

where xi are the realizations (samples) of the random variable x. For
random vectors, the sum is applied to each component.

Check that the approximation is indeed linear!

The deviation from the mean (without compensation), i. e. variance, can
be written as:

E[(x− E[x])(x− E[x])] = E[x2 − 2xE[x] + E[x]2] =
E[x2]− 2E[x]2 + E[x]2 = E[x2]− E[x]2



1-dimensional (single variable) Gaussian distribution

x ∼ N
(
µ, σ2

)
∝ e

−(x−µ)2

2σ2 µ, σ ∈ R

µ ≡ E[x] σ2 ≡ E[(x− E[x])(x− E[x])]

σ

µ
x

pdf(x)

1

µ

dim

x
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The left panel shows the usual way of representing the body of the violin we
saw before. The right panel shows the box plot view, in this case showing
the mean value and the standard deviation.

The curve can indicate the frequency at which values would appear if we
take large (infinite) number of samples from the distribution. Samples
appearing more frequently in regions with higher values. It can also be
used to represent our knowledge about a magnitude without the need to
make a reference to sampling. The former is the frequentist interpretation,
the latter is aligned with the Bayesian view.



1-dimensional (single variable) Gaussian distribution
Linearly* transformed (or linear change of) variable

With a linear change of variables, it maps to another gaussian:

x ∼ N
(
µ, σ2

)
y = ax+ b

y ∼ N
(
aµ+ b, a2σ2

)
−(x− µ)2

2σ2 =
−(y−ba − µ)2

2σ2 =

−(y − b− aµ)2

2a2σ2

µy := aµ+ b, σ2
y := a2σ2

µ transforms like the variable
and σ2 is multiplied by the
squared slope

source: s sampling mapping.m
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Also via the expectation operator:

σ2
y =E[y2]− E[y]2 = E[(ax+ b)2]− E[ax+ b]2

=E[a2x2 + 2abx+ b2]− (a2E[x]2 + 2abE[x] + b2)
=a2E[x2] + 2abE[x] + b2 − a2E[x]2 − 2abE[x]− b2

=a2(E[x2]− E[x]2) = a2σ2
x



2-dimensional (two variables) Gaussian distribution

[
x1
x2

]
= x ∼ N (µ,Σ) ∝ exp

[1
2(x− µ)>Σ−1(x− µ)

]
µ ∈ R2×1, Σ ∈ R2×2

x1
x2

1 2

µ1

µ2

t

xt

See s mvnormal.py
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We can still plot the joint distribution of the two variables on a piece of
paper. However it can be quite difficult to read.
The box plot or violin view is also useful. We loose the information about
the interaction between the variables.
The covariance matrix has the entries:

Σ =
[

var(x1) var(x1, x2)
var(x1, x2) var(x2)

]



2-dimensional (two variables) Gaussian distribution
Linearly* transformed (or linear change of) variable

x ∼ N (µ,Σ)
y = Ax+ b

y ∼ N
(
Aµ+ b, AΣA>

)
var(y) := E[(y − E[y]) (y − E[y])>]

var(Ax+ b) :=E[(Ax+ b− E[Ax+ b]) (Ax+ b− E[Ax+ b])>]
=E[(Ax− E[Ax]) (Ax− E[Ax])>]
=A (E[x− E[x]) (x− E[x])>]A> = A var(x)A>

Note: this is valid for any number of dimensions
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The definition of variance follows the same idea as before. The factors
y−E[y] are the deviation from the mean of each component. The product
by the transpose pairs all components to each other. The diagonal terms
are

Σi,i = E[(yi − E[yi])(yi − E[yi])]

called covaraice of yi. The off-diagonal terms are

Σi,j = E[(yi − E[yi])(yj − E[yj ])]

called (cross-)covariances of yi and yj



3-dimensional Gaussian distribution

x ∼ N (µ,Σ) ∝ exp
[1

2(x− µ)>Σ−1(x− µ)
]

µ ∈ R3×1, Σ ∈ R3×3

1 2 3

µ1

µ2

µ3

t

xt
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With three variables we cannot plot the joint distribution on a piece of
paper. The box plot or violin view is still useful.



multi-dimensional distribution
Box or violin plot view

year height
1985 138.8
1986 139.0
1987 139.0
1988 138.8

... ...
2010 138.8
2011 138.7
2012 139.2
2013 139.0
2014 139.0
2015 138.6

... ...
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Recall the height data, it was also indicated the year in which the mea-
surement was done. Hence we can think of the heights of a given year as
a random variable. We will have as many variables as years in our data
set.
We cannot plot the joint distribution of all these variables.



multi-dimensional distribution
Box or violin plot view

Kalman(’60): ”Intuitively, a random process is simply a set of random
variables which are indexed in such a way as to bring the notion of time

into the picture.”
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The violin plot of each year put in temporal order is used to show the
evolution of some statistical properties (summaries) of the height. The
visualization hints at a single variable (height) that changes over time. to
understand the formal treatment, however, we need to think as a collection
of indexed random variables (one for each year). The two ways of looking
at the plot are compatible, but questions like: ”What’s the correlation
between the height in 1995 and 2006?” are better understood when we
think of different random variables.



∞-dimensional: GP

µ→ m(t) Σ→ k(t, t′)
x(t) ∼ GP(m (t) , k

(
t, t′
)
)
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A Gaussian process (or stochastic process if the local distribution is not
specified) is the idea saw before taken to the limit in which the time
index is continuous. The mean value becomes a function of time, and the
covariance is a function of two times.



∞-dimensional: GP
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Any slice in time of the process reveals a Gaussian distribution. These
processes are generated by linear dynamical systems with Gaussian process
noise.



Lunch: 1 hour



Iterated maps revisited

We combine what we have learned so far to define the prediction step of
the Kalman filter. We also discuss summary statistics from samples of a
stochastic process, and the exact computation of mean and variance for
Gaussian processes.



Iterated map with process noise: single variable
Map (mapping, transformation, etc.):

x = αy + ε ε ∼ N (0, σ2
ε )

Iterated map (use the result as the next value of x):

xk = αxk−1 + εk |α| ≤ 1, εk ∼ N (0, σ2
ε )

0 x0

1 x1 = αx0 + ε1

2 x2 = αx1 + ε2 = α2x0 + αε1 + ε2

3 x3 = αx2 + ε3 = α3x0 + α2ε1 + αε2 + ε3

4 . . .

5 xk = αkx0 +
∑k
i=1 α

k−iεi

juanpablo.carbajal@ost.ch (OST-IET-SCE) Introduction to recursive machine learning January 13, 2023 34 / 48

What do we get if α = 1?
What’s the distribution of x if we know the value of y?
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That we draw εk from a normal distribution means that each sample is
independent. If we look at the collection of εk as a random vector, this
means that the covariance matrix is diagonal:

Σε(i, j) = cov (εi, εj) = σ2
ε δi,j

The samples at different steps are independent and therefore the (cross-
)correlation between samples at different steps is zero.

”The noise” ε is called process noise, because it feeds into the evolution of
the process. It models uncertainties and/or perturbations in the dynamics.
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What happens to the ”old” noise terms if α < 1? And if α > 1?

Take α = 10−1, x0 = 1, and σε = 10−2. We ask for what k is ”likely”
that |εk| > αkx0.
Taking ”likely” as P (|εk| > αkx0) > 0.9, that is P (|εk| > 10−k), and
using the cumulative distribution of the normal we get k = 3. After 3
steps the signal is just noise. The step correlation of the signal, however,
still carries information about the map.



Iterated map with process noise: single variable
Example

xk = (1− 0.05)xk−1 + εk εk ∼ N (0, 0.012)

• Different trajectories for the
same initial value
• What’s the formula for the

mean trajectory (black line)?
• What’s the formula for the

variance of the trajectories?

source: s iterated map1D.py
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The trajectories do not repeat, even for the same initial value. Each sim-
ulation is ”unique”. Running the map several times from the same initial
value shows a distribution of trajectories (also called paths). We can com-
pute the mean trajectory by averaging the ensemble of trajectories at each
step. We can also compute the variance of the trajectories at each step.
Can we find a map for the mean trajectory?
Can we find a map for the variance?

Note the difference: we do not ask for the evolution of each initial value (a
path) but for the evolution of the ensemble (not over time, for each time
step!) mean and variance of many paths; in general the evolution of their
distribution.
The result is is know as the Fokker-Planck equation (a.k.a. Kolmogorov
forward equation, a.k.a. Smoluchowski equation).



Iterated map with process noise: single variable
Mean and Variance

xk = αkx0 +
k∑
i=1

αk−iεi εi ∼ N (0, σ2
ε )

At each time step it is a linear mapping, the result is Gaussian.

E[xk] =E[αkx0 +
k∑
i=1

αk−iεi] = αkE[x0] +
k∑
i=1

αk−iE[εi]︸ ︷︷ ︸
=0

=αkE[x0]

The mean trajectory is the one of the map without noise
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We directly compute the mean using the expectation operator.
Re-do the calculation using the iteration formula:

xk = αxk−1 + εk−1

What is the iteration formula for the mean?



Iterated map with process noise: single variable
Mean and Variance

xk = αkx0 +
k∑
i=1

αk−iεi εi ∼ N (0, σ2
ε )

At each time step it is a linear mapping, the result is Gaussian.

rk := xk − E[xk] = αk (x0 − E[x0]) +

φk︷ ︸︸ ︷
k∑
i=1

αk−iεi

E[r2
k] =E[α2k (x0 − E[x0])2 + 2αk (x0 − E[x0])φk + φ2

k]
=α2k E[(x0 − E[x0])2]︸ ︷︷ ︸

σ2
0

+2αk E[(x0 − E[x0])φk]︸ ︷︷ ︸
=0

+E[φ2
k]

=α2kσ2
0 + E

( k∑
i=1

αk−iεi

)2
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To compute the variance we first define the residual rk at each step. Then
apply the expectation operator as usual.
The initial condition could have σ0 = 0, I just kept it because it doesn’t
hurt.
In the last equality, all crossed terms are zero E[εiεj ] = δij (uncorrelated
noise).



Iterated map with process noise: single variable
Mean and Variance

xk = αkx0 +
k∑
i=1

αk−iεi εi ∼ N (0, σ2
ε )

At each time step it is a linear mapping, the result is Gaussian.

rk := xk − E[xk] = αk (x0 − E[x0]) +

φk︷ ︸︸ ︷
k∑
i=1

αk−iεi

E[r2
k] =α2kσ2

0 + E

( k∑
i=1

αk−iεi

)2 = α2kσ2
0 +

k∑
i=1

α2(k−i)E[ε2i ]

=
(
α2
)k
σ2

0 +
k∑
i=1

(
α2
)k−i

σ2
ε

Same as the state iteration but with α2 and noise σ2
ε .
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Re-do the calculation using the iteration formula:

xk = αxk−1 + εk−1

What is the iteration formula for the variance?



Iterated map: two variables

Map (mapping, transformation, etc.)

y = Ax+ ε ε ∼ N (0,Σε)

Iterated map:
xk = Axk−1 + εk εk ∼ N (0,Σε)
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Iterated map: two variables
Example

xk =
[

1 0.2
−0.2 0.92

]
xk−1 + εk εk ∼ N

(
0,
[
≈ 0 0
0 0.032

])
source: s iterated map2D.py
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Iterated map: two variables
Mean and variance

xk = Axk−1 + εk εk ∼ N (0,Σε)

µk := E[xk] = AE[xk−1] = Aµk−1

rk := xk − µk = A (xk−1 − µk−1) + εk = Ark−1 + εk
Σk := E[rkr>k ] = E[(Ark−1 + εk) (Ark−1 + εk)>] =

= E[Ark−1r
>
k−1A> + Ark−1ε

>
k + εkr>k−1A> + εkε>k ] =

= AE[rk−1r
>
k−1]A> + AE[rk−1ε

>
k ] + E[εkr>k−1]A> + E[εkε>k ] =

= AΣk−1A> + Σε

E[rk−1ε
>
k ] = E[(xk − µk)ε>k ] = E[xkε>k ]− µkE[ε>k ] = 0
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We directly compute the mean and variance by application of the expecta-
tion. To simplify the algebra in the variance we use the residuals rk. The
cross-covaraince between residuals and noise at different steps E[rk−1ε

>
k ]

are zero because the noise has zero mean and is not correlated with the
state.



Iterated map: important results

The iteration is a dynamical model of a process:

xk = Axk−1 + εk εk ∼ N (0,Σε)

Mean trajectory and variance:

µk = Aµk−1 Σk = AΣk−1A> + Σε

In the literature usually are written:

mk = Amk−1 Pk = APk−1A> + Q

together with a measurement model:

yk = Hmk + ρk ρk ∼ N (0,R)

are used to model a process and its sensors.
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The notation used in many books on Bayesian filtering and smoothing is
shown. The m used for the state reminds us that it is a ”mean” state.

Note that the covariance of the noise can also be step dependent, as long
as it does not depend on the state of the system.

So far we refer to ε as ”the noise”, in the literature it is called process noise,
because it feeds into the evolution of the process. It models uncertainties
and/or perturbations in the dynamics.



Kalman filter: prediction step

The iteration is a dynamical model of the mean of a process and its
sensors:

mk = Amk−1 Pk = APk−1A> + Q
ȳk = Hmk Sk = HPkH> + R

The first line is the prediction step. The second line provides a Gaussian
measurement ∼ N (Hmk,Sk)
To completely define the prediction step we need
• m: state vector
• P: state covariance
• A: transition (system, dynamics) matrix →evolves the state
• Q: process noise covariance →state noise inserted at each iteration
• H: measurement matrix →converts state to measurements
• R: measurement noise covariance →models sensor noise
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All matrices can change in each iteration as long as they do not explicitly
depend on the state mk.

1. What matrices are missing?
2. Derive the formulas for the mean measurement and the covariance

of the measurements: yk = Hmk Sk = HPkH> + R

3. What noises are included in Sk?



Seminar overview
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The first part of the seminar covered the modeling aspects that lead to the
prediction step of the Kalman filter: how to advance the model starting
from a ”known” state. At this point you should be able to use the Kalman
filter in applications and intuitively understand the effect of the different
matrices in the setup.



Kalman filter: prediction step
Focus

The iteration represent a dynamical model of a process:

xk = Axk−1 + εk εk ∼ N (0,Qk)
yk = Hxk + ρk ρk ∼ N (0,Rk)

Mean and variance of forward predictions (prediction step)

mk = Amk−1 Pk = APk−1A> + Qk−1
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This slide summarizes the modeling and prediction step of the KF.



Coffee break: 15 minutes



Setting up the Kalman filter

Refer to the Jupyter notebooks in the repository. We will explore applica-
tions of the Kalman filter and learn how ot set it up. How it learns from
the data will remain a mistery, but motors are a mistery to many drivers!



Wrap-up
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The first part of the seminar covered the modeling aspects that lead to the
prediction step of the Kalman filter: how to advance the model starting
from a ”known” state. At this point you should be able to use the Kalman
filter in applications and intuitively understand the effect of the different
matrices in the setup.



Kalman filter: prediction step

The iteration is a dynamical model of the mean of a process and its
sensors:

mk = Amk−1 Pk = APk−1A> + Q
ȳk = Hmk Sk = HPkH> + R

The first line is the prediction step. The second line provides a Gaussian
measurement ∼ N (Hmk,Sk)
To completely define the prediction step we need
• m: state vector
• P: state covariance
• A: transition (system, dynamics) matrix →evolves the state
• Q: process noise covariance →state noise inserted at each iteration
• H: measurement matrix →converts state to measurements
• R: measurement noise covariance →models sensor noise
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All matrices can change in each iteration as long as they do not explicitly
depend on the state mk.

1. What matrices are missing?
2. Derive the formulas for the mean measurement and the covariance

of the measurements: yk = Hmk Sk = HPkH> + R

3. What noises are included in Sk?
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