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Recap and Q&A



while no measurement: predict

m̂k = Akmk−1

P̂k = AkPk−1A⊤
k + Qk−1

predict measurement

ŷk = Hkm̂k

Ŝk = HkP̂kH⊤
k + Rk

on measurement: update



Kk = P̂kH⊤
k Ŝ−1

k

mk = m̂k + Kk (yk − ŷk)
Pk = P̂k − KkŜkK⊤

k

Do not forget to update your measurement prediction after and update.

Kalman filter
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These libraries are relatively easy to follow, and have a book for documentation:

FilterPy
https://filterpy.readthedocs.io/en/latest/
book: https://nbviewer.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/
blob/master/table_of_contents.ipynb

ekfukf
MATLAB/Octave https://github.com/EEA-sensors/ekfukf,
Octave installable https://github.com/kakila/ekfukf
book http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf (if you like it,
buy it!)

They are not performant (pykalman is abandoned), for prototyping. General probabilistic inference: PyMC3
https://docs.pymc.io/en/stable/

Python & GNU Octave (MATLAB) tools
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There are many libraries for Kalman filter, search for the one that suits you.
In my experience, I use simple ones for quickly prototyping, then implement what I need case specific. Algorithms are very simple.
Difficulty in inverting matrices: good algorithms are already available. Most relevant matrices are symmetric positive definite.
Consider Julia https://julialang.org/

https://filterpy.readthedocs.io/en/latest/
https://nbviewer.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb
https://nbviewer.org/github/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/table_of_contents.ipynb
https://github.com/EEA-sensors/ekfukf
https://github.com/kakila/ekfukf
http://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf
https://docs.pymc.io/en/stable/
https://julialang.org/


Implement recursive linear regression yk = tka + b + ϵk

Delayed linear regression yk = w1yk−1 + · · · + wdyk−d + ϵk

Warm-up
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Discretization of ODEs



Ordinary differential equations (ODE) define a function (the unknown) via a relation of its derivatives:

d2x(t)
dt2 + γ

dx(t)
dt

+ ω2x(t) = w(t)

That’s a 2nd oder equation. For low order we can shorten it to:

ẍ + γẋ + ω2x = w(t)

High order equations can (almost always) be converted to a system of 1st order equations:

x1(t) := x(t), x2(t) := ẋ(t)

ẋ =
ẋ1
ẋ2

 =
 0 1
−ω2 −γ


x1
x2

 +
01

 w(t) = Fx + Lw(t)

We exchange order for dimension.

What’s an ODE?
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In general F and L can depend on x and time. If they are constant or depend only on time the system is
linear (affine):

ẋ = F(t)x + L(t)wx(t)
ẏ = F(t)y + L(t)wy(t)
z := x + ay

ż = ẋ + aẏ = F(t)x + L(t)wx(t) + aF(t)y + aL(t)wy(t) =
= F(t) (x + ay) + L(t) (wx(t) + awy(t))

The derivative of the combination follows the same equation with the combined inputs.

Linear ODE
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Defines a 1-dimensional system: ẋ = Fx. Integrating both sides from 0 to t.∫ t
0 ẋ(τ )dτ = x(t) − x(0) → x(t) = x(0) +

∫ t
0 Fx(τ )dτ

Recursively insert the formal solution in its expression:
x(t) = x(0) +

∫ t
0 F

[
x(0) +

∫ τ
0 Fx(τ1)dτ1

]
dτ =

= x(0) + Fx(0)t +
∫ t
0

∫ τ
0 F 2x(τ1)dτ1dτ =

= x(0) + Fx(0)t +
∫ t
0

∫ τ
0 F 2 [

x(0) +
∫ τ1
0 Fx(τ2)dτ2

]
dτ1dτ =

= x(0) + Fx(0)t + 1
2
F 2x(0)t2 +

∫ t
0

∫ τ
0

∫ τ1
0 F 3x(τ2)dτ2dτ1dτ = . . .

x(t) = x(0) + Fx(0)t + 1
2
F 2x(0)t2 + 1

6
F 3x(0)t3 + . . . =

=
1 + Ft + F 2t2

2!
+ F 3t3

3!
+ . . .

 x(0) =

= exp(Ft)x(0)

1st order homogenous ODE
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The infinite sum inside the parenthesis is the Taylor expansion of exp(Ft). Check it by expanding ex around 0, i.e.

f (x) =
∞∑

n=0

1
n!

dnf

dxn

∣∣∣∣∣
xo

(x − xo)n

is the Taylor expansion of f (x) around xo



The homogenous case, defines a N-dimensional system: ẋ = Fx. Following the same procedure as before

x(t) =
I + Ft + F2t2

2!
+ F3t3

3!
+ . . .

 x(0) := exp(F t)x(0)

That’s the definition of the matrix exponential

Homogenous

1st order N-dimensional ODE
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The matrix exponential is not the exponential of each entry in the matrix (element-wise exponential). Consider

F =
0 1
0 0



F2 =
0 1
0 0


0 1
0 0

 = 0

→ Fn = 0

Then
exp(Ft) = I + Ft =

1 t

0 1

 ̸=
e0 et

e0 e0

 =
1 et

1 1





For ẋ − Fx = Lw(t). We get the solution between t0 and t:

x(t) = exp(F(t − t0))x(0) +
∫ t
t0

exp(F (t − τ ))Lw(τ )dτ

In the scalar case this looks like

Inhomogenous

1st order N-dimensional ODE
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Multiply both sides by exp(−Ft)
exp(−Ft)ẋ − exp(−Ft)Fx = exp(−Ft)Lw(t)

You can prove from the definition of the matrix exponential the property
d
dt

exp(−Ft) = − exp(−Ft)F

Just like the scalar case, but here the other of multiplication is important. Observe that:
d
dt

[exp(−Ft)x(t)] = exp(−Ft)ẋ − exp(−Ft)F(t)x

Then the equation reduces to
d
dt

[exp(−Ft)x(t)] = exp(−Ft)L(t)w(t)

and by integrating both sides from t0 to t we get the solution. Note that
∫ t

t0

d
dτ

[exp(−Fτ )x(τ )]dτ = exp(−Ft)x(t) − exp(−Ft0)x(t0)



For the general ODE
ẋ(t) = f (x(t), t)

If we move from t to t + ∆t we get the solution

x(t + ∆t) = x(t) +
∫ t+∆t
t f (x(τ ), τ )dτ

So the question is how to discretize the integral in the right-hand side. Choosing a quadrature defines an
integration method. Euler method is obtained by the approximation

∫ t+∆t
t f (x(τ ), τ )dτ ≈ f (x(t), t)∆t

Discretization
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ẋ = −3x ẋ = −3x − x2

source: s_euler_exp.m

Euler method 1D

Discretization: example
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ẋ =
 0 1
−ω2 −γ

 x ẋ =
 x2
−ω2 sin(x1) − γx2



source: s_euler_exp.m

Euler method 2D

Discretization: example
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The system ẋ − Fx = Lw(t) has an exact solution between t and t + ∆t

x(t) = exp(F∆t)x(0) + exp(F∆t)
∫ t+∆t
t exp(F (t − τ ))Lw(τ )dτ

So the approximation is only for the last integral. For example:

x̂(tk+1) = exp(F∆t) [x̂(tk) + Lw(tk)∆t]

Linear time invariant (LTI) systems

Discretization
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When w(t) is stochastic this is an instance of the Euler-Murayama method.



source: s_exp_step_input.m

Linear time invariant (LTI) systems

Discretization
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This also works when w(t) is a random process.

source: s_exp_step_input.m

Linear time invariant (LTI) systems

Discretization
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When w(t) is stochastic this is an instance of the Euler-Murayama method.
The stochastic case is subtle, e.g. the discretized noise has a variance that depends on the time step ∆t. For details, refer to Simo
Särkkä and Arno Solin (2019). Applied Stochastic Differential Equations.
There are stochastic methods that generalize the deterministic ones, e.g. Stochastic Runge-Kutta. For second order system check the
Stochastic Verlet algorithm.

https://users.aalto.fi/~ssarkka/#publications


The data model is yk = p(tk, n) + ϵk, where

p(t, n) :=
n∑

s=0
ast

s

is a polynomial of degree n. Consider the system

ẋ1 = x2 ẋ2 = x3 ẋ3 = 0
ẋ1
ẋ2
ẋ3

 =


0 1 0
0 0 1
0 0 0




x1
x2
x3



if we start at x(0) =
[
a0 a1 2a2

]
we get

x3(t) = 2a2 x2(t) = a1 + 2a2t x1(t) = a0 + a1t + a2t
2

we recover p(t, 2) on x1(t)!

Hands-on

Polynomial regression
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Can be generalized to any finite degree:

ẋ = Fx, Fij = δi(j+1), 1 ≤ i, j ≤ n + 1
x(0)⊤ =

[
a0 a1 2a2 . . . n!an

]

has p(t, n) in x1(t).

Then filter

A = exp (F∆t), Q ̸= 0
H =

[
1 0 . . . 0

]
, R ̸= 0

implements polynomial regression with drift model in the coefficients.

See s_polyreg.m

Hands-on

Polynomial regression
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Examples



Refer to tracking_example.py.

For more than 2 targets: position information
For 2 targets: position of 1st, relative position of 2nd w.r.t. 1st

The ”true” motion of target n (with mass mn) is given by:
ṗn

v̇n

 =
0 1
0 1

mn


p
v̇

 +
 0

1
mn

 f (t)

where f (t) is a chaotic force. It is modelled with:
 ˙̃pn
˙̃vn

 =
0 1
0 1

mn


p̃
ṽ

 +
01

 η(t), η(t) ∼ N(0, σ2
η)

Multiple Object tracking in 1D
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h0

qin

qout

The water level in the tank is given by:ḣ = qin(t) − qout(t)
Discharge is a function of the water level: qout(h(t)) = Chs, e.g. s = 1

2.
For any s ̸= 1, it is a nonlinear system.

For small variations of the level h(t) = ho + ∆h(t):

qout(h(t)) = Ch(t)s ≃ C
[
hs

o + shs−1
o (h(t) − ho)

]
= C(1 − s)hs

o + Cshs−1
o h(t)

:= −C1(ho) − C2(ho)h
ḣ = C2(ho)h + qin(t) + C1(ho)

The linearization adds a constant (negative) term to the input.

Water tank
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Linearized dynamics
ḣ = C2(ho)h + qin(t) + C1(ho)

The input has a known contribution q(t), and an unknown extra (small) inflow u(t):

qin(t) = q(t) + u(t)

We will model it with :
ḣ

δ̇C1
u̇

 =
C2(ho) 1 U (t)

0 0 0




h
δC1
u

 +


1
0
0

 [q(t) + C1(ho)] + Lη(t)

ẋ = F(t)x + Bq̃(t) + Lη(t), η(t) ∼ N(0, Ση)

where U (t) is a feature vector (a given set of time-dependent functions), and u their coefficients. δC1 is a
correction to the constant C1(ho) produced by the linearization.

Input modelling

Water tank
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The unknown inflow is modelled as
ũ(t) =

N∑
n=1

unUn(t)

and the known inflow is combined with the constant produced by the linearization

q̃(t) = q(t) + C1(ho)



Refer to tank_example_basis.py

Example

Water tank
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Participant examples



Manuel Regueiro-Picallo (manuel.regueiro@eawag.ch) from Eawag presented the problem of estimating
temperature distributions between measurements at two points. He discretized the unsteady diffussion
equation ∂T

∂t = k∂2T
∂xt and built the Kalman filter with the resulting matrices.

Reto Christen (reto.christen@ost.ch) from IET presented the tracking of rapid phase changes in
signals form the electrical grid (very high noise!). He also discussed the implementation of the filter in
embedded electronics. He used recursive regression with periodic functions of different frequencies.
Adrian Rohner (adrian.rohner@ost.ch) and Florian Hammer (florian.hammer@ost.ch) from IET
discussed the issue of smoothing speed wind velocity measurements from wind turbines, and the evaluation
of uncertain speed-to-power curves.

Examples provided by participants
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manuel.regueiro@eawag.ch
reto.christen@ost.ch
adrian.rohner@ost.ch
florian.hammer@ost.ch


Parameter estimation



The linear Kalman filter is defined with the parameters A, H, Q, R, P0, m0.

A, H reflect knowledge of the physical system (unless data-driven).
Bounds for the diagonal of R can be estimated from the data.
Q in general is hidden, unless derived from physical SDE.
P0, m0 can be critical for the performance of filters with long-term memories (eigenvalues of A closer to or
bigger than 1).

Idea: start by freezing degrees of freedom (à la stochastic gradient decent).

What to estimate?
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To estimate R use any smoother on the data and compute the variance of the residuals between smoothed data and raw data. There
is almost always a strong expectation on this parameter.
Many physics based models will have limited memory. An exception would be a fluid model where waves can carry information for long
distances and induce long-term temporal correlations. In general systems with echo (transport, waves) can produce these effects.



Augment your state with the parameters with constant noisy dynamics (drift model)
extraxk = extraxk−1 + ϵk, ϵk ∼ N(0, σ2

extra)

Works out-of-the-box if resulting model is linear in parameters, i.e. if we have in the dynamics a term of
the form axk−1, adding a to the state will render the model non-linear.

σextra controls how ”reactive” or ”nervous” the parameter is. Larger values, quicker adaptation, larger
confidence intervals.

See s_fourier_adaptive.m

Augmented state
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Bayesian filter for state space models with parameter vector θ

θ ∼ p(θ), xo ∼ p(x0|θ)
xk ∼ p(xk|xk−1, θ)
yk ∼ p(yk|xk, θ)

The idea is to compute the posterior distribution of states and parameters given the measurements

p(x0:T , θ|y1:T ) ∝ p(y1:T |x0:T , θ)p(x0:T |θ)p(θ)

where

p(y1:T |x0:T , θ) =
T∏

k=1
p(yk|xk, θ)

p(x0:T |θ) = p(x0|θ)
T∏

k=1
p(xk|xk−1, θ)

We focus on the parameters, so we ”average” (marginalize) out the states.

Posterior likelihood
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These are the same relations as before, we just made the parameters explicit.
p(θ) is the prior over the parameters.



Bayesian filter for state space models with parameter vector θ

θ ∼ p(θ), xo ∼ p(x0|θ)
xk ∼ p(xk|xk−1, θ)
yk ∼ p(yk|xk, θ)

The posterior distribution of parameters given the measurements
p(θ|y1:T ) ∝ p(y1:T |θ)p(θ)

where (check the ”averaged” states)

p(y1:T |θ) =
T∏

k=1
p(yk|y1:k−1, θ)

p(yk|y1:k−1, θ) =
∫ update︷ ︸︸ ︷
p(yk|xk, θ)︸ ︷︷ ︸

measurement

p(xk|y1:k−1, θ)︸ ︷︷ ︸
prediction

dxk

Posterior likelihood
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For conveninece of the notation we used
p(y1|y1:0, θ) = p(y1|θ)

To get the recursion for the posterior of the parameters, the key is to write a recursion for likelihood of the data. We do that next.



We know how to compute the posterior distribution of parameters given the measurements at a given step k

p(θ|y1:k) ∝ p(y1:k|θ)p(θ)

We define log-likelihood ϕk(θ):

exp(ϕk(θ)) := p(y1:k|θ) =
k∏

n=1
p(yn|y1:n−1, θ) = p(yk|yk−1, θ)

p(y1:k−1|θ)=exp(ϕk−1(θ))︷ ︸︸ ︷
k−1∏
n=1

p(yn|y1:n−1, θ)

= p(yk|yk−1, θ) exp(ϕk−1(θ))

Taking logs
ϕk(θ) = ϕk−1(θ) + log [p(yk|yk−1, θ)]

with ϕ0(θ) = log [p(θ)]

Posterior likelihood
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If the prior p(θ) is uniform, this is the same as maximum likelihood (ML). If the distribution reflect our prior knowledge about the
parameters, then it is maximum a posteriori probability (MAP).
ϕk(θ) is the log-likelihood, sometimes the negative is defined.
Maximizing the log-likelihood gives optimal estimates. This should remind you of Viterbi, if you know it.



With the filters we have been studying, the log-likelihood has an explicit formula.

vk(θ) := yk − H(θ)m̂k(θ)

ϕk(θ) = ϕk−1(θ) − 1
2

log
[
2π det Ŝk(θ)

]
− 1

2
v⊤

k (θ)Ŝ−1
k (θ)vk(θ)

√
Ŝk

H(θ)m̂k(θ)

yk
x

pdf(x)

Linear KF likelihood
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xk = exp


 0 1
−ω2 0

 ∆t

xk−1 +
01

 wk−1, wk−1 ∼ N(0, q)

yk =
[
1 0

]
xk + rk, rk ∼ N(0, σ2

y)

s_estimate_oscillator.py does

Line search for ω

Optimization for ω, q, σy, m0

Example: oscillator

Maximum likelihood
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Gradient based methods will not be sensitive to the data if started far away from a local maximum: likelihood tends to be sharp and
wiggly, vanishing gradients. Alternative: informative priors, e.g. tight bounds on the parameters.
If you want to optimize many parameters of the model, check the Expectation Maximization algorithm.



Wrap-up



Linear Kalman filter with Gaussian distributions ✓
Non-linear

Local linearization (Extended Kalman filter)
Gaussian approximation (Unscented Kalman filter, General Gaussina filters: GHKF, CKF)
Particle filters, . . .
Brute force (naive MC, simulation of trajectories)

Other noise models (check generalizations of KF, Särkkä’s book references)
Recursive or Batch?

Data: fixed size or incoming?
Estimation parameters: recorded data (batch) or online?

Summary and Outlook
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