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The iteration represent a dynamical model of a process:

xk = Axk−1 + ϵk ϵk ∼N(0, Qk)
yk = Hxk + ρk ρk ∼N(0, Rk)

Mean and variance of forward predictions (prediction step)

mk = Amk−1 Pk = APk−1A⊤ + Qk−1

Prediction step
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How do the predicted measurements look like?



(Conditional) Probability



The actual science of logic is conversant at present
only with things either certain, impossible, or entirely
doubtful, none of which (fortunately) we have to
reason on. Therefore the true logic for this world is
the calculus of Probabilities, which takes account of
the magnitude of the probability which is, or ought to
be, in a reasonable man’s mind.
James Clerk Maxwell (1850)

Probability is a numerical between value assigned to a plausibility. Impossibility is assigned the probability 0
and certainty is assigned the probability 1.

Probability
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We will see how Bayesian probability includes classical logic as a particular case and extends it to include reasoning on plausible events.



Works with propositions (A, B, etc.) that can be true or false.

A ≡ It rains at 10:00
B ≡ We see a blue sky

Logic
negation ¬A: true if A is false
conjunction A ∧B: true if A and B are both true
disjunction A ∨B: true if any of (or both) A or B are true
implication A =⇒ B: says that A ∧ ¬B is false (¬A ∨B is true)

Boolean
Ā

AB

A + B

A =⇒ B

Propositional logic
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State several propositions and determine their truth value. Does the value depend on the context?



A =⇒ B: says that AB̄ is false (Ā + B is true).

Means only that A = AB (the truth value of A is the same as the truth value of AB).

A =⇒ B
T T T
T F F
F T T
F T F

All true propositions logically imply all other true propositions.
It doesn’t mean: B deducible from A. This depends on the background information.
It doesn’t mean: B is caused by A. Causal physical consequence can be effective only at a later time. The
rain at 10:00 is not the physical cause of the clouds before 10:00. Implication doesn’t follow the uncertain
causal direction clouds→rain, but rather the certain non-causal rain→clouds.

Implication (logical)
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p(A|B)
The plausibility (probability) of a proposition A depends, in general, on whether we known/assume/believe
some other proposition B is true.

Example:

A ≡ My english pronunciation is perfect
B ≡ I grew up in Argentina
C ≡ I grew up in England

which is bigger? p(A|B), p(A|C)

Definition

Conditional probability
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All probabilities are conditional probabilities, because there is always some assumptions we made or knowledge we have that is relevant
for the assignation.
Think of ”The probability of a 6 in a fair die is 1

6”. What’s the background information?



To evaluate p(AB|C) we can proceed as follows:
1. determine the probability of A true given

information C. → p(A|C)
2. based on that, determine the probability of B true.
→ p(B|AC)

1. determine the probability of B true given
information C. → p(B|C)

2. based on that, determine the probability of A true.
→ p(A|BC)

Both paths should give the same

p(AB|C) = p(A|BC)
”prior” to knowing A︷ ︸︸ ︷

p(B|C) = p(B|AC)
”prior” to knowing B︷ ︸︸ ︷

p(A|C)

Plausibility (probability)

Product rule
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p(AB|C) is called the joint probability of A and B. The probability that both propositions are true.
There is nothing special in the ”prior”, it is just the probability we would assign ”before” we knew the other piece of information.
”before” here uses a temporal expression but it might have nothing to do with time.



p(A|C) + p(Ā|C) = 1 → ∑
i
p(Ai|C) = 1 →

∫ ∞
−∞p(A = a|C)da = 1

States that the probability distributes totally over the plausible propositions.

Particular case of (using B = Ā):

p(A + B|C) = p(A|C) + p(B|C)−p(AB|C)

Plausibility (probability)

Sum rule
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source: Luis Prade and Gan Khoon Lay at https://thenounproject.com

A dark night, a policeman walks down an apparently deserted street. Suddenly burglar alarm, across the
street a jewelry store with a broken window. A masked man crawls out of the broken window, carrying a
bag which turns out to be full of expensive jewelry. The policeman doesn’t hesitate at all in deciding that
this man is dishonest.

Is guilt implied by evidence?

Syllogisms
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Is it a logical deduction? Alternative hypothesis?
Is there validity in the reasoning?

https://thenounproject.com


Assume that A =⇒ B is true.
Strong

if A is true, then B is true

A ≡ rain at 10:00, B ≡ clouds before 10:00
A ≡ man is burglar, B ≡ robbed jewelry store

if B is false, then A is false

B̄ ≡ no clouds before 10:00, Ā ≡ no rain at 10:00
B̄ ≡ didn’t rob jewelry store, Ā ≡ man isn’t burglar

Weak
if B is true, then A is more plausible
Evidence doesn’t prove A, verification of its
consequence gives more confidence in A

B ≡ clouds before 10:00, A ≡ rain at 10:00
B ≡ robbed jewelry store, A ≡ man is burglar

if A is false, then B less plausible
Evidence doesn’t disprove B, one of the reasons
eliminated, less confidence in B

Ā ≡ no rain at 10:00, B ≡ clouds before 10:00
Ā ≡ man isn’t burglar, B ≡ robbed jewelry store

Syllogisms
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The implication does not imply causation or deduction. The examples are just for illustration of the syllogisms.



Assume that A =⇒ B is true.

C ≡ A =⇒ B
Strong

if A is true, then B is true

p(B|AC) = p(AB|C)
p(A|C)

= p(A|C)
p(A|C)

= 1

if B is false, then A is false

p(A|B̄C) =

=0︷ ︸︸ ︷
p(AB̄|C)
p(B̄|C)

= 0

Weak
if B is true, then A is more plausible

p(A|BC) ≥ p(A|C) p(Ā|BC) ≤ p(Ā|C)
=1︷ ︸︸ ︷

p(B|AC)
p(B|C)

≥ 1

if A is false, then B less plausible

p(B|ĀC) ≤ p(B|C)
p(Ā|BC)
p(Ā|C)

≤ 1

Syllogisms
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Assume that ”if A is true, then B is more plausible” is true.

if B is true, then A more plausible.

Assume that if ”a man is robbing a jewelry store” it is more plausible that he will be ”found in the
suspicious situation”. If he is actually found, then it is more plausible that he is robbing the jewelry.

We assume that
p(B|AZ) ≥ p(B|Z)

then the product rule gives the result

p(A|BZ) = p(B|AZ)
p(B|Z)

p(A|Z) ≥ p(A|Z)

Weaker sillogism
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I used Z for the context information, to avoid confusion with the C used before.



Update step



Xk−1 Xk

YkYk−1

Ak

Hk−1 Hk

Dynamic model (noisy): p(xk|xk−1)

Given p(xk−1|y:k−1) it provides p(xk|xk−1y:k−1).
The model uses only xk−1, the previous state ”blocks” information
from previous measurements, hence p(xk|xk−1y:k−1) = p(xk|xk−1)

The previous states are not sharp values
but distributed, to condition on the measurement we ”average” over
all possible previous states, compatible with the measurements so far:

p(xk|y1:k−1) =
∫∫∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

Measurment model (noisy): p(yk|xk)

Probabilistic prediction step
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When the proposition A ≡ the variable takes the value v we write

p(A|C) .= p(v|C)

I have omitted the background information in the slide, but it is always there. For example, the (parameters of the) distribution of the
noise.
When yk is given (measured), p(yk|xk) is called the likelihood of the measured value (data).



Prediction
p(xk|y1:k−1) =

∫∫∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

Update
p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1)

p(xk−1|y1:k−1) previous estimate.
p(xk|y1:k−1) what we believe xk would be before we observed yk (prediction).
p(yk|xk) the likelihood of the observed yk given our prior belief (measurement).

Probabilisitc update step
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For Gaussian variables the computations can be written explicitly:

N(x|m, P) = 1√
(2π)n det P

exp−1
2

(x−m)⊤P−1 (x−m)

x
y

 ∼N


a
b

 ,

 A C
C⊤ B




x ∼N(a, A)
y ∼N(b, B)

x|y ∼N(a + CB−1(y − b), A−CB−1C⊤)
y|x ∼N(b + C⊤A−1(x− a), B−C⊤A−1C)

x ∼N(m, P)
y|x ∼N(Hx + u, R)

x
y

 ∼N


 m
Hx + u

 ,

 P PH⊤
HP HPH⊤ + R




y ∼N(Hx + u, HPH⊤ + R)

Distribution of Jointly Gaussian variables
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Do exercise 3.5 from Särkkä, S. (2013). Bayesian Filtering and Smoothing doi:10.1017/CBO9781139344203
Check the Schur complement of a matrix.



Prediction
p(xk|y1:k−1) =

∫∫∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

m̂k = Akmk−1

P̂k = AkPk−1A⊤k + Qk−1

Update
p(xk|y1:k) ∝ p(yk|xk)p(xk|y1:k−1)

ŷk = Hkm̂k

Sk = HkP̂kH⊤k + Rk

Kk = P̂kH⊤k S−1
k

mk = m̂k + Kk (yk − ŷk)
Pk = P̂k −KkSkK⊤k

Prediction and Update step
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- propagation of uncertainty to output using best estimate
- kalman gain
- update mean by projecting error on kalman gain
- update cov by propagating uncertainty on measurement backward



while no measurement: predict

m̂k = Akmk−1

P̂k = AkPk−1A⊤k + Qk−1

predict measurement

ŷk = Hkm̂k

Ŝk = HkP̂kH⊤k + Rk

on measurement: update



Kk = P̂kH⊤k Ŝ−1
k

mk = m̂k + Kk (yk − ŷk)
Pk = P̂k −KkŜkK⊤k

Implement these functions in a programming language:

m, P←− kf_predict(m, P, A, Q)
y, S←− kf_measure(m, P, H, R)
m, P←− kf_update(y, m, P, H, R)

Kalman filter
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Note which matrices participate in each function. Update does not depend on Q. How would you determine which states are most
sensitive to the residuals yk − ŷk?



Data driven models



Data-driven as complementary to mechanistic. The model does not intentionally exploit prior knowledge
about the data generating process.

If prior knowledge exists it desirable to consider it, but:

Too much work
Ignorance of methods

In science, efforts should be taken to exploit the prior knowledge.

There are not intrinsic data-driven models.

Linear regression can be mechanistic in some context, e.g. for an ideal gas at constant volume, pressure
and temperature are linearly related:

PV = nRT

What’s a data driven model?
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What prior knowledge do you have about:

• Falling objects
• The motion of planets in their orbits
• The behavior of bacteria

Mention a problem for which you would have loads of prior knowledge.



model : yk = tka + b + ϵk

Batch

D =


t1 1

...
tN 1

 , y⊤ =
[
y1 · · · yN

]

D
a
b

 = y + ϵ

Recursive (assumes ordered correlates)

xk =
a
b


A = I, Q = 0
H =

[
∆t 1

]
, R = Σϵ

Linear regression
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What would be the batch and recursive for of yk = tkak + b + ϵk.
What would be the measurement model if correlates are not ordered?
How can you get rid of explicit tk in the model? (tk is in principle unbounded!)



model : yk = tka + b + ϵk

Batch

D =


t1 1

...
tN 1

 , y⊤ =
[
y1 · · · yN

]

D
a
b

 = y + ϵ

Recursive (assumes ordered correlates)

xk =
a
b


A = I, Q ̸= 0
H =

[
∆t 1

]
, R = Σϵ

See s_filtering_interactive.py (time varying
linear regression)

Linear regression
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The model without process noise does not update the initial values. By setting a symmetric non-negative process noise covariance the
states update.



model : yk = tka + b + ϵk

source: s_recursive_linreg.m

Linear regression
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model : yk = antn
k + · · · + a1tk + a0 + ϵk

Batch

D =


tn
1 · · · t1 1

...
t2
N · · · tN 1

 , y⊤ =
[
y1 · · · yN

]

D
a
b

 = y + ϵ

Recursive

xk = a

A = I, Q ̸= 0
Hk =

[
tn
k · · · tk 1

]
, R = Σϵ

Polynomial regression
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What is the issue with this measurement matrix? How would you avoid this issue?

x =


a0...
an


A = I + ∆tC, Cij = δi(j+1)

See s_polyreg.m



model : yk = antn
k + · · · + a1tk + a0 + ϵk

source: s_recursive_linreg.m

Polynomial regression
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model : yk = w1yk−1 + · · · + wdyk−d + ϵk (auto-regressive model: AR)

Batch

D =


yd+1−1 · · · y1...
yN−1 · · · yN−d

 , y⊤ =
[
y0 · · · yN

]

Dw = y(d+1):N + ϵ

Recursive

xk = wk

A = I, Q ̸= 0
Hk =

[
yk−1 · · · yk−d

]
, R = Σϵ

Delayed regression
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The rows of the design matrix are moving windows.



Any function of the independent variable can be put in the design matrix:

Dk: =
[
ϕn(tk) · · · ϕ1(tk)

]

which corresponds to the measurement matrix, i.e.

Hk = Dk:

combined with the drift dynamic model

xk = wk

A = I, Q ̸= 0

gives the recursive version.

Properties of the function set
{
ϕi

}
can be used to write a more stable model, e.g. polynomials.

See s_fourier.m and s_fourier_adaptive.m for frequency tracking.

Basis function decomposition

Extreme learning machines
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In machine learning Hk is also known as a feature vector.
The only requisite of KF is that the models (dynamic and measurement) are linear in the states.



source: s_fourier_adaptive.m

Basis function decomposition

Extreme learning machines
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The process noise allows the states to be adapted online. This means that the amplitude of each basis function is updated at each
iteration. A quick change in the coefficients is picked up quickly (depending on process noise level).
Here the amplitudes of frequency 2 and 3 got exchanged.



Parameter estimation I



Augment your state with the parameters with constant noisy dynamics (drift model)
extraxk = extraxk−1 + ϵk, ϵk ∼N(0, σ2

extra)

Works out-of-the-box if resulting model is linear in parameters, i.e. if we have in the dynamics a term of
the form axk−1, adding a to the state will render the model non-linear.

σextra controls how ”reactive” or ”nervous” the parameter is. Larger values, quicker adaptation, larger
confidence intervals.

See s_fourier_adaptive.m

Augmented state
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Frequently there is a work-around to the ”non-linearization” problem, imagination is the limit.



If you have historical data (not growing, not online) batch analyses could be performed.

Consider data
{
(ti, xi)

}N

i=1

The model
xk = Axk−1

can be learned from the data using linear regression.

For an ODE model
ẋ = Bx

Estimate the time derivative ẋ from the data, then do linear regression.

Nonlinear models can also be learned this way.

Once the dynamics is identified by a batch method, apply the KF formalism and continue recursively.

Functional data analysis

Batch regression of historical data
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There is plenty of methods of learning dynamical systems from data, sometimes called ”data-driven dynamical systems” or ”system
identification”, and probably by other names depending on the community.
Some references:

• Functional Data Analysis (2005) by J. O. Ramsay and B. W. Silverman
• Gaussian Processes for Machine Learning (2006) by Carl Edward Rasmussen and Christopher K. I. Williams
• Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control (2019) by Steven L.

Brunton and J. Nathan Kutz



Wrap-up



while no measurement: predict

m̂k = Akmk−1

P̂k = AkPk−1A⊤k + Qk−1

predict measurement

ŷk = Hkm̂k

Ŝk = HkP̂kH⊤k + Rk

on measurement: update



Kk = P̂kH⊤k Ŝ−1
k

mk = m̂k + Kk (yk − ŷk)
Pk = P̂k −KkŜkK⊤k

Implement these functions in a programming language:

m, P←− kf_predict(m, P, A, Q)
y, S←− kf_measure(m, P, H, R)
m, P←− kf_update(y, m, P, H, R)

Kalman filter
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Note which matrices participate in each function. Update does not depend on Q. How would you determine which states are most
sensitive to the residuals yk − ŷk?



Any function of the independent variable can be put in the design matrix:

Dk: =
[
ϕn(tk) · · · ϕ1(tk)

]

which corresponds to the measurement matrix, i.e.

Hk = Dk:

combined with the drift dynamic model

xk = wk

A = I, Q ̸= 0

gives the recursive version.

Properties of the function set
{
ϕi

}
can be used to write a more stable model, e.g. polynomials.

See s_fourier.m and s_fourier_adaptive.m for frequency tracking.

Basis function decomposition

Extreme learning machines
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In machine learning Hk is also known as a feature vector.
The only requisite of KF is that the models (dynamic and measurement) are linear in the states.
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