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Overview



source: s_filtering_interactive.py

Our goal
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The goal of the workshop is that you are able to understand and configure Kalman filters. You should be able ot understand when to
use it, how to use it, and what to do in case it is not applicable.



An initial state → Prior distribution
Model for the dynamics of the inferred states: how the states change over time → Linear Iterated maps
Model for how the measurements are obtained from the states → Linear Map, likelihood
A method to update the inferred states → Bayes rule, posterior distribution

Expert knowledge is realized in the models of the dynamics and the measurements.

Model dynamics (structure and parameter values) can also be learned from data (out fo scope: data driven
dynamical systems, system identification). Given the model structure parameters can be tuned to the data
(within scope: parameter estimation)

The needed ingredients
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source: Wikipedia, Kalman filter

The needed ingredients
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Our goal of today is to understand the prediction step. In the following session we will cover the update step. Finally we will work
several examples.



source: Särkkä, S. doi:10.1017/CBO9781139344203

Filtering and smoothing
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State estimation problems can be divided into optimal prediction, filtering, and smoothing depending on the time span of the measure-
ments available with respect to the time of the estimated state.
Filtering: current state given the previous and current measurements.
Prediction: future state beyond the current state.
Smoothing: current state given previous, current, and future measurements.



source: Särkkä, S. doi:10.1017/CBO9781139344203

Filtering and smoothing
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Smoothing uses future information to update the past, hence the estimation is smoother.
Let’s start with prediction.



Iterated maps



Map (mapping, transformation, etc.):
x = αy

Iterated map (use the result as the next value of x):

xk = αxk−1 |α| ≤ 1

0. x0

1. x1 = αx0

2. x2 = αx1 = ααx0 = α2x0

3. x3 = αx2 = αα2x0 = α3x0

4. . . .

5. xk = αkx0

The composition of linear maps gives a different
linear map at each step: not a straight trajectory

Iterated map: single variable
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What do we get if α = 1?



Map (mapping, transformation, etc.):
x = αy

Iterated map (use the result as the next value of x):

xk = αxk−1 |α| ≤ 1

0. x0

1. x1 = αx0

2. x2 = αx1 = ααx0 = α2x0

3. x3 = αx2 = αα2x0 = α3x0

4. . . .

5. xk = αkx0

The composition of linear maps gives a different
linear map at each step: not a straight trajectory

Iterated map: single variable
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Do you expect a straight trajectory?
What do we get if α = 1 and α = −1?



Map (mapping, transformation, etc.):
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Iterated map: single variable
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xk = (1− 0.05)xk−1

source: s_iterated_map1D.m

Observation: linear map but not straight trajectory

Example

Iterated map: single variable
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Test other values of α ∈ [−1, 1]. For what values of α do you see qualitative change in behavior?
What happens when α < −1 or α > 1?



Transform two variables x1, x2 into y1, y2

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

Organize the values in tables (matrices)

matrix: A =
a11 a12
a21 a22



single column: x =
x1
x2

 y =
y1
y2


single row: x⊤ =

[
x1 x2

]

Define the product of rows and columns
[
x y

]
·
u
w

 = xu + yw

The transformation of the variables now looks like

y = Ax

Matrices and vectors

Iterated map: two variables
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The color of the indices suggest a way to order the equations. Do you have any idea?



Transform two variables x1, x2 into y1, y2

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

Organize the values in tables (matrices)

matrix: A =
a11 a12
a21 a22



single column: x =
x1
x2

 y =
y1
y2


single row: x⊤ =

[
x1 x2

]

Define the product of rows and columns
[
x y

]
·
u
w

 = xu + yw

The transformation of the variables now looks like

y = Ax

Matrices and vectors

Iterated map: two variables
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The shape (soemtimes size) of a matrix with n rows and m columns is written n × m. One can also specify the set to which the
entries (or cells) of the matrix belong to, e.g. R2×3 are matrices with 2 rows and 3 columns with entries in the real numbers. Other
examples would be Zn×n,

{
0, 1

}n×m, etc.

If x is a column vector, what gives xx⊤?
Work this out, because it will help with the definition of the variance of a random vector.



Transform two variables x1, x2 into y1, y2

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

Organize the values in tables (matrices)

matrix: A =
a11 a12
a21 a22



single column: x =
x1
x2

 y =
y1
y2


single row: x⊤ =

[
x1 x2

]

Define the product of rows and columns
[
x y

]
·
u
w

 = xu + yw

The transformation of the variables now looks like

y = Ax

Matrices and vectors

Iterated map: two variables
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Re-write the transformation using row vectors.



Map (mapping, transformation, etc.)
y = Ax

Iterated map:

xk = Axk−1

A = I + α

 0 1
−1 −2α

 0 ≤ α ≤ 1

0. x0

1. x1 = Ax0

2. x2 = Ax1 = AAx0 = A2x0

3. x3 = Ax2 = AA2x0 = A3x0

4. . . .

5. xk = Akx0

The composition of linear maps gives a different
linear map at each step: not a straight trajectory

Iterated map: two variables
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xk =
I + 0.2

 0 1
−1 −0.4


 xk−1

source: s_iterated_map2D.m

Example

Iterated map: two variables
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Test other values of α ∈ [0, 1]. For what values of α do you see qualitative changes in behavior?
What happens when α < 0 or α > 1?



xk = Axk−1

yk = Hxk Measurement model

Measure 1st component: H =
[
1 0

]
Measure 2nd component: H =

[
0 1

]
What does this measures?

H =
[
−1 1

]

What’s H if we measure the mean of the two
components?

Measurement model
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The dimension of y could be anything. For m measurements and a n dimensional state we have that: x ∈ Rn×1, y ∈ Rm×1, A ∈ Rn×n,
H ∈ Rm×n.
In practise it is common to have m (number of measurements) lower than n. Hence H is usually a wider than taller (short-fat matrix).
Modify s_iterated_map2D.m (or implement your own) and implement different measurement matrices H. Plot the measurements.



xk = Axk−1 + Buk−1 Input matrix, inputs
yk = Hxk

Example from kinematics
pt = pt−1 + vt−1∆t vt = vt−1 + at−1︸ ︷︷ ︸

Ft−1
m

∆t

define

xt =
pt

vt

 A =
1 ∆t
0 1



ut = at B =
 0
∆t


then we get (assuming we observe only the position)

xt = Axt−1 + But−1

yt =
[
1 0

]
xt

Inputs
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For n states and k inputs, the input matrix has the shape n× k.
Can you provide an example, even if it is 1-dimensional?
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The example is the Euler method, which is not a good discretization unless ∆t is very small. An alternative map would be

pt = pt−1 + vt−1∆t + 1
2
at−1∆t2

B =
∆t2

2
∆t


and at−1 is the mean acceleration between t− 1 and t.



Inputs

Introduction to recursive probabilistic learning13 01.10.2021



Error propagation



Take two variables related by: y = b + ax

Linearly related variables
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Take two variables related by: y = b + ax

At a given value xo we get: yo = b + axo

If we modify xo by a given amount ∆x:

ŷ = b + a(xo + ∆x) = b + axo︸ ︷︷ ︸
=yo

+a∆x = yo + a∆x

source: https://www.geogebra.org/m/peude6ek

Linearly related variables
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https://www.geogebra.org/m/peude6ek


Take two variables related by: y = b + ax

At a given value xo we get: yo = b + axo

If we modify xo by a given amount ∆x:

ŷ = b + a(xo + ∆x) = b + axo︸ ︷︷ ︸
=yo

+a∆x = yo + a∆x

Then yo changes an amount ∆y:

ŷ = yo + ∆y

∆y := a∆x

source: s_sampling_mapping.m

Linearly related variables
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Take two variables related by: y = b + ax

∆y := a∆x

The ”error” ∆x propagates to y via the slope a of the relation. The intercept b doesn’t play a role in the
induced ”error” ∆y.

Linearly related variables
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Can you propagate and initial value error on an iterated map?



xk = axk−1

Using our previous result
∆xk = a∆xk−1

It follows the same dynamics as the state!

Let’s propagate an initial value error

0. x0 + ∆x0

1. x1 = a (x0 + ∆x0)
2. x2 = a2 (x0 + ∆x0)
3. . . .

4. xk = ak (x0 + ∆x0)

It is just the iterated map on a different initial condition!

Error propagation in an 1D interated map
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Implement these formulas in the computer and run some simulations for the same x0 and different values of ∆x0.

For many simulations with different values of ∆x0, what’s the mean value of xk?

Open question: what if we made an error at each iteration step?

What changes if the state is multi-dimensional xk? Consider these matrices:

Ad = 1
2
I Am =

 1
2

1
2

−1
3

1
2



and propagate an error in the 1st component of the initial value , i.e. x⊤o =
[
xo1 + ∆xo1 xo2

]



Consider two variables connected by a nonlinear relation: y = f (x)
At a given value xo we get yo = f (xo)

If we modify xo by a given amount ∆x:

ŷ = f (xo + ∆x)

source: https://www.geogebra.org/m/vqppqnwz

Non-linearly connected variables and small error
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https://www.geogebra.org/m/vqppqnwz


Consider two variables connected by a nonlinear relation: y = f (x)

If ∆x is small (and f analytic), then we can proceed:

ŷ = f (xo + ∆x) ≈ f (xo) + ∂f

∂x

∣∣∣∣∣∣
xo

∆x

ŷ = yo + ∂f

∂x

∣∣∣∣∣∣
xo

∆x = yo + ∆y

∆y := ∂f

∂x

∣∣∣∣∣∣
xo

∆x

source: s_sampling_mapping.m

Non-linearly connected variables and small error
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Consider two variables connected by a nonlinear relation: y = f (x)

∆y := ∂f

∂x

∣∣∣∣∣∣
xo

∆x

The small ”error” ∆x propagates to y via the local slope of the relation. For different values of xo the
”error”propagates differently.

There are other approaches for the non-linear case that do not make the same assumptions we did here.
This is not on the scope of the course. A good place to start would be Wikipedia’s article on propagation
of uncertainty https://en.wikipedia.org/wiki/Propagation_of_uncertainty.

Non-linearly connected variables and small error
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https://en.wikipedia.org/wiki/Propagation_of_uncertainty


Nonlinear mappings can radically change
the distribution

y = 1
2

tanh(15(x− µ))
(
e3|x−µ| + 1

)
+ 1

Non-linearly connected variables
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Gaussian (Normal) distribution



year height
1985 138.8
1986 139.0
1987 139.0
1988 138.8

... ...
2010 138.8
2011 138.7
2012 139.2
2013 139.0
2014 139.0
2015 138.6

... ...

Box or violin plot view

1-dimensional (single variable) distribution
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The data is the height of many girls over several years. We can look at the distribution of all these heights making a violin plot. In
the middle of the violin you see a box plot. The body of the violin is a smoothed version of an histogram. The body of the violoin is
usually plotted resting on the horizontal axis. Here I want to emphasize the summary offered by the box plot, which shows in a line a
location of the distribution (mean or median) and the scale of its spread (quartiles or standard deviation).



x ∼ N
(
µ, σ2) ∝ e

−(x−µ)2
2σ2 µ, σ ∈ R

µ ≡ E[x] σ2 ≡ E[(x− E[x])(x− E[x])]

σ

µ
x

pdf(x)

1

µ

dim

x

1-dimensional (single variable) Gaussian distribution
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The expectation operation is linear, is a and b are constants:

E[a + bx] = a + bE[x]

Numerically, the expectation is approximated by the usual arithmetic mean

E[x] ≃ 1
N

N∑
i=1

xi

where xi are the realizations (samples) of the random variable x. For random vectors, the sum is applied to each component.
Check that the approximation is indeed linear!
The deviation from the mean (without compensation), i. e. variance, can be written as:

E[(x− E[x])(x− E[x])] = E[x2 − 2xE[x] + E[x]2] = E[x2]− 2E[x]2 + E[x]2 = E[x2]− E[x]2



x ∼ N
(
µ, σ2) ∝ e

−(x−µ)2
2σ2 µ, σ ∈ R

µ ≡ E[x] σ2 ≡ E[(x− E[x])(x− E[x])]

σ

µ
x

pdf(x)

1

µ

dim

x

1-dimensional (single variable) Gaussian distribution
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The left panel shows the usual way of representing the body of the violin we saw before. The right panel shows the box plot view, in
this case showing the mean value and the standard deviation.

The curve can indicate the frequency at which values would appear if we take large (infinite) samples from the distribution. Samples
appearing more frequently in regions with higher values. It can also be used to represent our knowledge about a magnitude without
the need to make a reference to sampling. The former is the frequentist interpretation, the latter is aligned with the Bayesian view.



With a linear change of variables, it maps to another gaussian:

x ∼ N
(
µ, σ2)

y = ax + b

y ∼ N
(
aµ + b, a2σ2)

−(x− µ)2

2σ2 = −(y−b
a − µ)2

2σ2 =
−(y − b− aµ)2

2a2σ2

µy := aµ + b, σ2
y := a2σ2

µ transforms like the variable and σ2

is multiplied by the squared slope

source: s_sampling_mapping.m

Linearly* transformed (or linear change of) variable

1-dimensional (single variable) Gaussian distribution
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Also via the expectation operator:

σ2
y =E[y2]− E[y]2 = E[(ax + b)2]− E[ax + b]2

=E[a2x2 + 2abx + b2]− (a2E[x]2 + 2abE[x] + b2)
=a2E[x2] + 2abE[x] + b2 − a2E[x]2 − 2abE[x]− b2

=a2(E[x2]− E[x]2) = a2σ2
x



x1
x2

 = x ∼ N (µ, Σ) ∝ exp
1
2
(x− µ)⊤Σ−1(x− µ)


µ ∈ R2×1, Σ ∈ R2×2

x1
x2

1 2

µ1

µ2

t

xt

See s_mvnormal.m

2-dimensional (two variables) Gaussian distribution
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We can still plot the joint distribution of the two variables on a piece of paper. However it can be quite difficult to read.
The box plot or violin view is also useful. We loose the information about the interaction between the variables.



x ∼ N (µ, Σ)
y = Ax + b

y ∼ N
(
Aµ + b, AΣA⊤

)

var(y) := E[(y − E[y]) (y − E[y])⊤]

var(Ax + b) :=E[(Ax + b− E[Ax + b]) (Ax + b− E[Ax + b])⊤]
=E[(Ax− E[Ax]) (Ax− E[Ax])⊤]
=A (E[x− E[x]) (x− E[x])⊤] A⊤ = A var(x)A⊤

Note: this is valid for any number of dimensions

Linearly* transformed (or linear change of) variable

2-dimensional (two variables) Gaussian distribution
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The definition of variance follows the same ide as before. The factors y − E[y] are the deviation from the mean of each component.
The product by the transpose pairs all components to each other. The diagonal terms are

Σi,i = E[(yi − E[yi])(yi − E[yi])]

called covaraice of yi. The off-diagonal terms are

Σi,j = E[(yi − E[yi])(yj − E[yj])]

called (cross-)covariances of yi and yj



x ∼ N (µ, Σ) ∝ exp
1
2
(x− µ)⊤Σ−1(x− µ)


µ ∈ R3×1, Σ ∈ R3×3

1 2 3

µ1

µ2

µ3

t

xt

3-dimensional Gaussian distribution
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With three variables we cannot plot the joint distribution on a piece of paper. The box plot or violin view is still useful.



year height
1985 138.8
1986 139.0
1987 139.0
1988 138.8

... ...
2010 138.8
2011 138.7
2012 139.2
2013 139.0
2014 139.0
2015 138.6

... ...

Box or violin plot view

multi-dimensional distribution
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Recall the height data, it was also indicated the year in which the measurement was done. Hence we can think of the heights of a
given year as a random variable. We will have as many variables as years in our data set.
We cannot plot the joint distribution of all these variables.



Box or violin plot view

multi-dimensional distribution
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µ→ m(t) Σ→ k(t, t′)
x(t) ∼ GP(m (t) , k (t, t′))
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∞-dimensional: GP
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∞-dimensional: GP
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Iterated maps revisited



Map (mapping, transformation, etc.):
x = αy + ϵ ϵ ∼ N (0, σ2

ϵ )

Iterated map (use the result as the next value of x):
xk = αxk−1 + ϵk |α| ≤ 1, ϵk ∼ N (0, σ2

ϵ )

0. x0
1. x1 = αx0 + ϵ1
2. x2 = αx1 + ϵ2 = α2x0 + αϵ1 + ϵ2
3. x3 = αx2 + ϵ3 = α3x0 + α2ϵ1 + αϵ2 + ϵ3
4. . . .

5. xk = αkx0 + ∑k
i=1 αk−iϵi

Iterated map with process noise: single variable
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What do we get if α = 1?
What’s the distribution of x if we know the value of y?
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4. . . .

5. xk = αkx0 + ∑k
i=1 αk−iϵi

Iterated map with process noise: single variable
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That we draw ϵk from a normal distribution means that each sample is independent. If we look at the collection of ϵk as a random
vector, this means that the covariance matrix is diagonal:

Σϵ(i, j) = cov (ϵi, ϵj) = σ2
ϵ δi,j

The samples at different steps are independent and therefore the (cross-)correlation between samples at different steps is zero.
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ϵ )

Iterated map (use the result as the next value of x):
xk = αxk−1 + ϵk |α| ≤ 1, ϵk ∼ N (0, σ2

ϵ )

0. x0
1. x1 = αx0 + ϵ1

2. x2 = αx1 + ϵ2 = α2x0 + αϵ1 + ϵ2
3. x3 = αx2 + ϵ3 = α3x0 + α2ϵ1 + αϵ2 + ϵ3
4. . . .

5. xk = αkx0 + ∑k
i=1 αk−iϵi
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What happens to the ”old” noise terms if α < 1? And if α > 1?

Take α = 10−1, x0 = 1, and σϵ = 10−2. We ask for what k is ”likely” that |ϵk| > αkx0.
Taking ”likely” as P (|ϵk| > αkx0) > 0.9, that is P (|ϵk| > 10−k), and using the cumulative distribution of the normal we get k = 3.
After 3 steps the signal is just noise. The step correlation of the noise, however, still carries information about the map.



xk = (1− 0.05)xk−1 + ϵk ϵk ∼ N (0, 0.012)

Different trajectories for the same initial value
What’s the formula for the mean trajectory (black
line)?
What’s the formula for the variance of the
trajectories?

source: s_iterated_map1D.m

Example

Iterated map with process noise: single variable
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The trajectories do not repeat, even for the same initial value. Each simulation is ”unique”. Running the map several times from
the same initial value shows a distribution of trajectories (also called paths). We can compute the mean trajectory by averaging the
ensemble of trajectories at each step. We can also compute the variance of the trajectories at each step.
Can we find a map for the mean trajectory?
Can we find a map for the variance?



xk = αkx0 +
k∑

i=1
αk−iϵi ϵi ∼ N (0, σ2

ϵ )

At each time step it is a linear mapping, the result is Gaussian.

E[xk] =E[αkx0 +
k∑

i=1
αk−iϵi] = αkE[x0] +

k∑
i=1

αk−i E[ϵi]︸ ︷︷ ︸
=0

=αkE[x0]

The mean trajectory is the one of the map without noise

Mean and Variance

Iterated map with process noise: single variable
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We directly compute the mean using the expectation operator.



xk = αkx0 +
k∑

i=1
αk−iϵi ϵi ∼ N (0, σ2

ϵ )

At each time step it is a linear mapping, the result is Gaussian.

rk := xk − E[xk] = αk (x0 − E[x0]) +

ϕk︷ ︸︸ ︷
k∑

i=1
αk−iϵi

E[r2
k] =E[α2k (x0 − E[x0])2 + 2αk (x0 − E[x0]) ϕk + ϕ2

k]
=α2k E[(x0 − E[x0])2]︸ ︷︷ ︸

σ2
0

+2αk E[(x0 − E[x0]) ϕk]︸ ︷︷ ︸
=0

+E[ϕ2
k]

=α2kσ2
0 + E


 k∑

i=1
αk−iϵi


2

In the last term all crossed terms are zero E[ϵiϵj] = δij (uncorrelated noise).

Mean and Variance

Iterated map with process noise: single variable
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To compute the variance we first define the residual rk at each step. Then apply the expectation operator as usual.
The initial condition could have σ0 = 0, I just kept it because it doesn’t hurt.



xk = αkx0 +
k∑

i=1
αk−iϵi ϵi ∼ N (0, σ2

ϵ )

At each time step it is a linear mapping, the result is Gaussian.

rk := xk − E[xk] = αk (x0 − E[x0]) +

ϕk︷ ︸︸ ︷
k∑

i=1
αk−iϵi

E[r2
k] =α2kσ2

0 + E


 k∑

i=1
αk−iϵi


2 = α2kσ2

0 +
k∑

i=1
α2(k−i)E[ϵ2

i ]

=
(
α2)k

σ2
0 +

k∑
i=1

(
α2)k−i

σ2
ϵ

Same as the state iteration but with α2 and noise σ2
ϵ .

Mean and Variance

Iterated map with process noise: single variable

Introduction to recursive probabilistic learning31 01.10.2021

k∑
i=1

(
α2

)k−i
s=k−i
↓=

k−1∑
s=0

(
α2

)s k→∞
−→ 1

1− α2



Map (mapping, transformation, etc.)

y = Ax + ϵ ϵ ∼ N (0, Σϵ)

Iterated map:
xk = Axk−1 + ϵk ϵk ∼ N (0, Σϵ)

Iterated map: two variables
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xk =
I + 0.2

 0 1
−1 −0.4


 xk−1 + ϵk ϵk ∼ N

0,

≈ 0 0
0 0.032




source: s_iterated_map2D.m

Example

Iterated map: two variables
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xk = Axk−1 + ϵk ϵk ∼ N (0, Σϵ)

µk := E[xk] = AE[xk−1] = Aµk−1

rk := xk − µk = A (xk−1 − µk−1) + ϵk = Ark−1 + ϵk

Σk := E[rkr⊤k ] = E[(Ark−1 + ϵk) (Ark−1 + ϵk)⊤] =
= E[Ark−1r

⊤
k−1A⊤ + Ark−1ϵ

⊤
k + ϵkr⊤k−1A⊤ + ϵkϵ⊤k ] =

= AE[rk−1r
⊤
k−1]A⊤ + AE[rk−1ϵ

⊤
k ] + E[ϵkr⊤k−1]A⊤ + E[ϵkϵ⊤k ] =

= AΣk−1A⊤ + Σϵ

E[rk−1ϵ
⊤
k ] = E[(xk − µk)ϵ⊤k ] = E[xkϵ⊤k ]− µkE[ϵ⊤k ] = 0

Mean and variance

Iterated map: two variables
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As before we directly compute the mean and variance by application of the expectation. To simplify the algebra in the variance we use
the residuals rk. The cross-covaraince between residuals and noise at different steps E[rk−1ϵ

⊤
k ] are zero because the noise has zero

mean and is not correlated with the state.



The iteration represent a dynamical model of a process:

xk = Axk−1 + ϵk ϵk ∼ N (0, Σϵ)

Mean trajectory and variance:

µk = Aµk−1 Σk = AΣk−1A⊤ + Σϵ

In the literature usually are written:

mk = Amk−1 Pk = APk−1A⊤ + Qk−1

and they are called the prediction step.

Iterated map: important results
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The notation used in many books on Bayesian filtering and smoothing is shown. Note that the covariance of the noise can also be step
dependent, as long as it does not depend on the state of the system.

So far we refer to ϵ as ”the noise”, in the literature it is called process noise, because it feeds into the evolution of the process. It
models uncertainties and/or perturbations in the dynamics.



Stochastic modelling



x ∼ U(−1, 1)
y ← a

ϵ

|ϵ|
x2 + ϵ ϵ ∼ U(−1, 1)

c ∼ N (0, 1)
x ∼ N (2c− 1, 0.2)
y ∼ N (c3, 0.1)

source: s_common_cause.py

Correlation doesn’t imply causation

Correlation and Causation
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X vs. Y plots have different interpretations. On the left panel we see a ”functional” or ”casual” plot, in which changing the values of x

will affect the values of y. This is because the variables are connected by a function, y being a function of x. Note that the correlation,
however, is negligible.
On the right panel we see a plot that would seem to also be ”causal”, saying that values of x affect y, however if we inspect the
process generating the data we see that x does not affect y. The variables are correlated and are statistically dependent, but they are
not causally dependent.



x← 0 ∼ U(−1, 1)
y ← a

ϵ

|ϵ|
x2 + ϵ ϵ ∼ U(−1, 1)

c ∼ N (0, 1)
x← 0 ∼ N (2c− 1, 0.2)
y ∼ N (c3, 0.1)

source: s_common_cause.py

Intervention

Correlation and Causation
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The situation becomes evident when we intervene the values of x. That is, we make an experiment and set x to a value (in this case
x← 0).
In the right panel, it is evident that the distribution of y after the intervention is the same as before the intervention, x wasn’t affecting
y, although they were correlated. In the left panel however, the intervention on x radically changed the distribution of y.
These types of distributions are called interventional distributions. We will see that they are conceptually different from conditional
distributions.
For more information refer to

• Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. 2017. Elements of Causal Inference: Foundations and
Learning Algorithms. The MIT Press.

• Pearl, Judea, and Dana Mackenzie. 2019. The Book of Why. Harlow, England: Penguin Books.



Graphic models are a tool to visualize dependencies between (random) variables. The nodes of a graph
represent the variables and arrows indicate direction of influence.

x ∼ U(−1, 1)
y ← a

ϵ

|ϵ|
x2 + ϵ ϵ ∼ U(−1, 1)

X Y

c ∼ N (0, 1)
x ∼ N (2c− 1, 0.2)
y ∼ N (c3, 0.1)

C

X Y

Graphical models
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There are also undirected graphic models. See https://en.wikipedia.org/wiki/Graphical_model for an overview.

https://en.wikipedia.org/wiki/Graphical_model


For an iterated map

xk = Axk−1 + Buk−1 + ϵx

yk = Hxk + ϵy

Xk−1 Xk

Uk−1

YkYk−1

Graphical models

Iterated map
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Wrap-up



The iteration represent a dynamical model of a process:

xk = Axk−1 + ϵk ϵk ∼ N (0, Σϵ)

Mean trajectory and variance:

µk = Aµk−1 Σk = AΣk−1A⊤ + Σϵ

In the literature usually are written:

mk = Amk−1 Pk = APk−1A⊤ + Qk−1

and they are called the prediction step.

Iterated map: important results
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The notation used in many books on Bayesian filtering and smoothing is shown. Note that the covariance of the noise can also be step
dependent, as long as it does not depend on the state of the system.

So far we refer to ϵ as ”the noise”, in the literature it is called process noise, because it feeds into the evolution of the process. It
models uncertainties and/or perturbations in the dynamics.



x ∼ U(−1, 1)
y ← a

ϵ

|ϵ|
x2 + ϵ ϵ ∼ U(−1, 1)

c ∼ N (0, 1)
x ∼ N (2c− 1, 0.2)
y ∼ N (c3, 0.1)

source: s_common_cause.py

Correlation doesn’t imply causation

Correlation and Causation
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X vs. Y plots have different interpretations. On the left panel we see a ”functional” or ”casual” plot, in which changing the values of x

will affect the values of y. This is because the variables are connected by a function, y being a function of x. Note that the correlation,
however, is negligible.
On the right panel we see a plot that would seem to also be ”causal”, saying that values of x affect y, however if we inspect the
process generating the data we see that x does not affect y. The variables are correlated and are statistically dependent, but they are
not causally dependent.
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